APPENDIX B - GEOTECHNICAL REPORT

North Kildonan Feedermain Detailed Design -**Geotechnical Report**

Prepared for:

Associated Engineering 203 - # Five Donald Street Winnipeg, Manitoba R3L 2T4

Project Number: 0115 004 00

Date: January 15, 2014

Distribution:

Mr. Colin McKinnon, P.Eng., PMP Mr. Jason Lueke, Ph.D.,P. Eng.

Quality Engineering | Valued Relationships

January 15, 2014

Our File No. 0115 004 00

Mr. Colin McKinnon, P.Eng., PMP Associated Engineering 203 - # Five Donald Street Winnipeg, Manitoba R3L 2T4

RE:

North Kildonan Feedermain - Geotechnical Report

TREK Geotechnical Inc. is pleased to submit our geotechnical report for the detailed design of the North Kildonan Feedermain

Please contact Nelson Ferreira if you have any questions.

Sincerely,

TREK Geotechnical Inc.

Per:

Nelson John Ferreira, M.S., P.Eng.

Principal

Tel: 204.975.9433

NJF:jh Encl.

Revision History

Revision No.	Author	Issue Date	Description	
0	NJF	January 15 2014	Final Report	

Authorization Signatures

Prepared By:

Nelson John Ferreira, M.Sc., P.Eng. Geotechnical Engineer

Reviewed By:

Ken Skaftfeld, P.Eng.

Senior Geotechnical Engineer

Table of Contents

Letter of Transmittal

Revision History and Authorization Signatures

1.0	Intro	duction a	and Background	1						
2.0	Revie	ew of Ex	tisting Information	1						
3.0	Sub-S	Surface I	Investigation	2						
4.0	Sub-s	surface C	Conditions	3						
	4.1	Genera	al Soil and Bedrock Stratigraphy	3						
		4.1.1	Clay Fill	4						
		4.1.2	Lacustrine Clay	4						
		4.1.3	Alluvial Deposits	4						
		4.1.4	Silt Till	5						
		4.1.5	Limestone Bedrock	5						
	4.2	Groun	dwater Conditions	6						
		4.2.1	Bedrock Aquifer	7						
		4.2.2	Overburden	7						
5.0	River	bank Sta	ability Analysis	7						
	5.1	Design	n Objective	7						
	5.2	Slope	Stability Analysis	8						
	5.3	Numer	rical Model Description	8						
	5.4	Stabili	ty Modelling Results	9						
		5.4.1	West Riverbank	9						
		5.4.2	East Riverbank	9						
6.0	Geote	Geotechnical Considerations and Recommendations								
	6.1	Feedermain Alignment and Profile								
	6.2	Erosio	n Protection	10						
	6.3	Excava	Excavations and Shoring							
		6.3.1	General	11						
		6.3.2	Cohesive Soils	11						
		6.3.3	Non-cohesive Soils	12						

	6.4	Horizontal Directional Drilling	13
7.0	Permi	tting	13
8.0	Closu	re	13
9.0	Refere	ences	14
List o	of Ta	bles	
Table 4	4.1	Groundwater Monitoring Data (TREK THs)	6
Table 4	4.2	Groundwater Monitoring Data (KGS THs)	6
Table :	5.1	Soil Properties used in Stability Modeling	9
Table (5.1	Riprap Gradation	10
Table 6	5.2	Recommended Design Parameters for Cantilevered Walls - Cohesive Soils	12
Table (5.3	Recommended Design Parameters for Cantilevered Walls in Alluvial Soils	6
List o	of Fig	gures	
Figure	01	TH13-01 Core Samples	
Figure	02	TH13-05 Core Samples	
Figure	03	Slope Stability Model Output Example	
Figure	04	West Riverbank (October 23, 2013)	
Figure	05	East Riverbank (November 8, 2013)	
List o	of Ap	ppendices	
Appen	dix A	Test Hole Logs	
Appen	dix B	Test Hole Logs (By Others)	
Appen	dix C	Laboratory Testing Results	
Appen	dix D	Unconfined Compressing Testing Results (bedrock cores)	

1.0 Introduction and Background

The existing North Kildonan feedermain was constructed in 1972 and is a critical component of the City of Winnipeg's water distribution system. Where it crosses the Red River just north of the Kildonan Settlers Bridge, the feedermain consists of a 600 mm diameter steel pipe placed on top of the channel bottom (Drawing 01). A major leak in the pipe at the river crossing occurred in the fall of 2012 and temporary repairs to the pipe were completed in the spring of 2013. As part of the current Operating and Capital Works budget, the City of Winnipeg plans to replace the river crossing segment of the feedermain in 2014.

A preliminary engineering study was completed by Associated Engineering in July 2013 with geotechnical support from TREK Geotechnical Inc. (TREK). The geotechnical work was a desktop study using existing soil and groundwater information and limited stability modelling. Based on the outcome of the preliminary study, the Water and Waste Department determined that horizontal directional drilling (HDD) is the preferred method of installation for the new pipe segment and Associated Engineering proposed a new feedermain alignment to suit this installation method. In support of detailed design, the geotechnical scope of work carried out by TREK includes review of existing information, a sub-surface investigation, assessment of sub-surface conditions, in particular the condition of the bedrock, a riverbank slope stability analysis, and recommendations for stabilization and erosion protection works if required. This report summarizes the geotechnical component of the detailed design.

2.0 Review of Existing Information

Existing information was reviewed for geotechnical information pertinent to the project. The information was provided by various departments within the City of Winnipeg (Water and Waste, Public Works, Waterways) and Associated Engineering. The information reviewed includes the following:

- Preliminary Engineering for the Rehabilitation or Replacement of the North Kildonan Feedermain (Associated Engineering July 2013): The report includes relevant historical information, a preliminary riverbank stability assessment, and geotechnical considerations and recommendations for various new feedermain rehabilitation or replacement options.
- North Kildonan Feedermain Record Drawings (Various Years): As-built drawings from 1972 for the current feedermain (Drawing No.:D-1251) contained relevant information on riverbank and riverbed geometry, indicated the riverbanks in the vicinity of the feedermain had been improved and a riprap blanket had been placed on the riverbank.
- Forcemain Sub-Surface Investigation (KGS Group, November 2012): Three test holes were drilled into limestone bedrock on the south side of the Settlers Bridge and piezometers were installed into overburden soils and bedrock to measure groundwater levels. Test holes logs are included in Appendix B.

- Settlers Bridge Design and Construction (Various Reports 1988 to 1990): Relevant information includes test logs, record drawings of the construction works which included riprap and riverbank stabilization on the west bank (rock columns), and performance monitoring results related to ground movements and groundwater levels. Test hole logs are included in Appendix B.
- Aerial Photos (Various Years from 1948 to 2008): Aerial photo interpretation was undertaken
 on stereo pairs to identify historical riverbanks movements or evidence of historical riverbank
 erosion.
- Survey Information Survey information included Lidar survey (2008) and a river bed profile along the existing feedermain provided by the COW. Barnes & Duncan Land Surveying and Geomatics completed a detailed survey in the fall of 2013 of the riverbank and sonar soundings of the riverbed in the vicinity of the existing and proposed feedermain.

A site plan and cross-sections were generated (Drawing 01 to 04) from the information gathered and collected during this assignment which includes test hole locations, relevant bridge works, bridge monitoring instrumentation locations, and interpreted soil and bedrock units.

3.0 Sub-Surface Investigation

A sub-surface investigation was carried out along the proposed feedermain alignment to supplement existing information in the general area of the crossing. The intent of the investigation was to determine sub-surface conditions that may impact the constructability and performance of the proposed feedermain such as the presence of wet silts and sands (potential to slough), delineation of alluvial and lacustrine soils (riverbank stability implications) and competence of the bedrock (hydraulic fracturing, loss of drill fluid).

Four test holes were initially planned along the proposed feedermain alignment; one test hole at each riverbank and two within the river channel. The riverbank test holes (TH13-01 and TH13-04) were to be drilled just into the bedrock on the east and west banks respectively to obtain information primarily for riverbank stability assessment and shoring. The test holes within the channel (TH 13-02 and TH13-03) were to be drilled 18 m into bedrock to determine conditions to the proposed depth of the new feedermain installation within the rock. These test holes were to be drilled off of a barge before freeze-up as ice conditions in the winter to support drilling equipment are known to be poor; open water is common in this channel section immediately downstream of the outfall from the North End Water Pollution Control Centre. However, the barge could not be launched due to low river levels at the time of the investigation (early November) and drilling test holes within the channel was therefore not possible. The sub-surface investigation was subsequently modified to exclude the channel test holes but obtain additional bedrock information at the riverbank locations. This included drilling to a greater depth on the east side of the river (TH13-01) and adding an additional deep test hole on the west bank (TH13-05).

TH13-01, TH13-04 and TH13-05 were drilled on November 7th and 8th, 2013 at the locations shown on Drawing 01. Drilling was performed by Paddock Drilling Ltd. (Brandon, MB) under the supervision of TREK personnel. Test holes were drilled using an Acker SS3 and CME-850 track mounted drill rigs equipped with either 125 mm diameter augers or 170 mm hollow stem augers. Test holes were drilled to power auger refusal where the drilling method was switched to HQ coring equipment to advance the test holes. TH13-01 and TH13-05 were drilled approximately 20 m into bedrock (~37m total depth) while TH13-04 was drilled approximately 4 m into bedrock (~22 m total depth). A standpipe piezometer was installed in the bedrock in TH13-04 and TH13-05 to measure short term groundwater levels in the bedrock. Standpipe piezometers were installed in each of the alluvial and bedrock units in TH 13-01 to measure short term levels in these two units and determine vertical flow direction (gradient).

Sub-surface soils observed during the drilling were visually classified based on the Unified Soil Classification System (USCS). Other pertinent information such as drilling, groundwater and backfill conditions was also recorded. Samples retrieved during drilling include disturbed grab (auger flight) samples, relatively undisturbed Shelby tubes, and bedrock core. All samples were transported to TREK's laboratory in Winnipeg, Manitoba for laboratory testing and further classification. Laboratory testing consisted of moisture content determination on all samples. Undrained shear strength testing (pocket penetrometer, Torvane and unconfined compression) and unit weight determination was also completed on select samples. Unconfined compression test were performed on select rock core samples at Thurber Engineering Ltd.'s Laboratory in Edmonton, Alberta.

Test hole logs are attached in Appendix A and include soil and rock descriptions, the elevation of soil and rock units encountered and other pertinent information such as groundwater levels and sloughing conditions. Laboratory testing results on soil samples are included on the individual test hole logs in Appendix A or separately in Appendix C and Appendix D (unconfined compression test results bedrock core samples). Test hole locations were surveyed by Barnes & Duncan Land Surveying and Geomatics. Existing test hole logs from previous investigations by the KGS Group (KGS) and Dyregrov and Burgess in the immediate area of the crossing are included in Appendix B with their locations shown on Drawing 01. Test holes by Dyregrov and Burgess are referred to herein as TH1 to 23 and DMT 1 to 7 (dilatometer test). The KGS test holes drilled in 2012 at the forcemain are referred to herein as TH 12-01, TH 12-02 and TH 12-03.

4.0 Sub-surface Conditions

4.1 General Soil and Bedrock Stratigraphy

The soil stratigraphy on the west riverbank generally consists of lacustrine clay with shallow silt layers (TH1 to TH4, TH12-03). A thin veneer (1.5 m thick) of alluvial clay was encountered in TH5 and TH13-04 which increased in thickness to 9 m towards the river (TH12).

The east riverbank generally consists of alluvial clays, silts, sands and gravels (TH13-01 drilled on the east bank along the proposed alignment). A lacustrine clay layer is evident in TH12-01, 06 and

TH07 on the east bank and tends to increase in thickness away from the river. Lacustrine clay was not encountered in the east riverbank along the proposed feedermain (TH13-01).

Based on information from previous geotechnical investigations for the bridge, the riverbed stratigraphy is expected to consist of relatively thin alluvial deposits overlying till and limestone bedrock. Till and bedrock may be exposed in areas of the riverbed (based on observations by divers during a recent inspection).

The interpreted soil and bedrock units are shown in cross-section on Drawing 02 and a brief description of these units is provided below. Where the descriptions provided include a consolidation of test hole data from previous investigations they are referred to herein as "overall". Where the results are specific to test holes drilled by TREK along the feedermain alignment, they are referred to as such. All interpretations of soil stratigraphy for the purposes of design should refer to the detailed test hole logs in Appendix A. Information from investigations by others attached in Appendix B cannot be corroborated by TREK and should therefore be considered as supplemental information only.

4.1.1 <u>Clay Fill</u>

Clay fill was encountered on the east riverbank in TH13-01 which was drilled through an existing road bed. The clay fill is silty and contains trace gravel and trace organics, brown, moist, stiff and of high plasticity. Moisture contents range from 23% to 26%, with an average of 25%.

4.1.2 Lacustrine Clay

The lacustrine clay is silty, brown to grey, moist, and of high plasticity. Trace silt inclusions are present throughout the stratum and sand and gravel inclusions are present near the silt till contact. Overall, undrained shear strengths on relatively undisturbed (Shelby Tubes) samples range from 23kPa to 75 kPa with an average of 50 kPa, indicating a soft to firm consistency. In comparison, the average undrained shear strength in TH13-04 drilled along the feedermain alignment is 44.5 kPa. Overall bulk unit weights range from 16.2 to 18.3 kN/m³ with an average of 16.9 kN/m³ compared to an average of 18 kN/m³ in TH 13-04. Moisture contents range from 28% to 61%, with an average of 50% in TH 13-04.

Silt layers were encountered within the upper 2 to 4 m of the lacustrine clay at test hole locations outside of vicinity of the river channel and at prairie elevation (e.g. TH 3). The silt is light brown, moist to wet, soft, and contains varying amounts of fine grained sand.

4.1.3 Alluvial Deposits

West Riverbank

Alluvial clay was encountered at the surface of four test holes in the vicinity of the riverbank on the west bank (TH13-04, TH5, TH12, and TH13). The thickness of the layer ranges from 1.5 m (TH13-04) to 9 m in TH 12 drilled along the bridge alignment. The alluvial clay is silty, brown becoming grey with depth, moist, stiff and of medium to high plasticity. An undrained shear strength of 23 kPa

was measured on one sample in TH12 where the thickest layer was encountered. Overall bulk unit weights range from 17.7 to 18 with an average of 17.8 kN/m³. Moisture contents range from 25% to 28% based on two samples.

East Riverbank

Alluvial soils on the east river bank consist of varying proportions of clay, silt, sand, and gravel as identified in TH13-01, TH6 to 8, TH12-01 and TH12-02. The consistency of the alluvial soils varies considerably over short distances ranging from loose (soft) to dense (stiff) and moist to saturated depending on the location of the water table. An undrained shear strength of 23 and 53 kPa and a bulk unit weight of 18.7 kN/m3 was measured in TH13-01. Moisture contents range from 18% to 37% with an average of 30% in TH13-01.

4.1.4 **Silt Till**

Silt till is present below the lacustrine and alluvial deposits at an overall contact elevation between 210.7 and 216.0 m with average overall contact elevation of 213.4 m. The till matrix is predominately low plastic silt with varying amounts of clay, sand, and gravel and can contain cobbles and boulders. The till is light brown, moist to wet, loose to dense. Standard Penetration Tests blow counts (N) of 8 to 50 blows per 300mm with an average of 28 were measured in the till in TH13-01 (N= 29, 50) and TH12-02 (N=8).

4.1.5 Limestone Bedrock

The till is underlain with bedrock at overall contact elevations between 209.2 and 211.0 m. Along the feedermain alignment, the contact elevation is estimated to be 210.2 m. The bedrock at the west riverbank consisted of dolomite or dolomitic limestone while the east riverbank consists of mudstone, dolomitic mudstone, dolomitic limestone. The bedrock is brown to grey, vuggy, and can contain chert nodules, laminations, and calcareous mudstone. The bedrock units encountered are consistent with geological maps of the area which indicate that the crossing is located on either side of a geological contact between the Selkirk Member and the lower part of the Fort Garry Member of the Red River Formation.

The top metre of bedrock may be broken, highly fractured, or consists of thinly bedded rock. Horizontal and vertical fractures were noted throughout the bedrock units below this upper zone. The fractures tended to be rough and undulating with some of the fractures being in-filled with clay (rock flour). The bedrock is considered to be generally sound (RQD > 70% over 3.0m) which is consistent with previous sub-surface investigations. Photos of core samples are shown on Figure 01 & 02. Test holes drilled along the proposed alignment indicate the bedrock at the east riverbank (TH13-01) contains two zones of unsound bedrock; RQDs of less than 35% were recorded between elevations 207.5 m to 202.7 m and elevations 196.6 m to 193.5 m. A zone of unsound bedrock was also encountered in the vicinity of TH16 during drilling of test holes during design of the bridge.

Unconfined compressive strengths testing was completed on 7 bedrock core samples chosen to reflect the geology at both the west and east riverbanks at variable elevations, in different bedrock types and in bedrock of differing quality. The measured unconfined compressive strengths range from 11.9 to

49.1 MPa with an average 32.3 MPa. These values are consistent with strength testing data from Manitoba Department of Energy and Mines for the Selkirk Member and Lower Fort Garry Member (Bannatyne, 1988). Results from unconfined compression testing are included in Appendix D.

4.2 Groundwater Conditions

Groundwater conditions observed by TREK at the time of drilling are shown as notes on individual test hole logs. These notes refer to depths of seepage observed in open holes drilled using solid stem augers and water levels recorded in open holes immediately after retrieving augers and/or drill casing. Seepage conditions could not be observed when test holes were advanced using hollow stem augers and drill casing. Seepage conditions are also indicated on test hole logs prepared by others (Dyregrov and Burgess, KGS). These logs indicate seepage and sloughing can occur within the wet alluvial soils, silt till and near-surface silt layers. It is important to recognize that the short-term groundwater levels observed may vary seasonally, after heavy precipitation events or as a result of construction activities.

Piezometric (groundwater) elevations measured in TREK's test holes drilled along the proposed feedermain alignment are summarized in Table 4.1 with levels as of November 28th 2013 shown on the individual test hole logs in Appendix A. Groundwater levels measured along the forcemain south of the bridge are summarized in Table 4.2.

TREK Test Hole # > TH13-01 TH13-01 TH13-04 TH13-05 River Level SP1A SP1B SP4 SP5 At Bridge Piezometer # > Piezometer Tip Elev. (m) > 207.24 215.17 205.55 191.21 Geologic Unit > **Alluvial Sand** Bedrock Bedrock Bedrock Geodetic Elevation (m) Date 6-Nov-13 222.97 7-Nov-13 223.18 222.99 223.16 14-Nov-13 223.30 28-Nov-13 223.18 222.41 223.24 223.30 221.92

Table 4.1 – Groundwater Monitoring Data (TREK THs)

Table 4.2 – Groundwater Monitoring Data (KGS THs)

Test Hole # >	TH12-02	TH12-02B	TH12-02B	TH12-03	TH12-03B	TH 12-03B	River			
Piezometer Type >	SPT	SPT PN		STP	STP	PN	Level			
Piez. Tip Elev. (m) >	202.31	1 210.76 216.86 20		200.82	209.86	219.00	At			
Geologic Unit >	Bedrock	Silt Till	Silty Sand	Bedrock	Silt Till	Silty Clay	Bridge			
Date		Geodetic Elevation (m)								
15 May-13	15 May-13 225.05		223.26	225.11	225.20	226.04	226.33			

4.2.1 <u>Bedrock Aquifer</u>

Groundwater levels in the bedrock aquifer on November 28th range from elevation 223.2 to 223.3 m compared to a river elevation of 221.9 m. This river elevation is representative of winter river levels which are drawn down from a regulated summer water elevation of about 223.7 m. Groundwater levels in the bedrock aquifer in May of 2013 were at about elevation 225.1 m compared to a spring river level of 226.3 m. Historical data collected from a Provincial observation well about 1.5 km west of the crossing indicates that regional groundwater levels are highest during the period from October through June with the lowest levels in late July or early August. The measured groundwater levels at the site are therefore likely reflective of the high end of the seasonal range of regional groundwater levels.

Groundwater levels in the till at the site compare well with bedrock aquifer levels indicating the two geologic units are hydraulically connected. During the high river stage in May of 2013, the river level was about 1.2 m higher than measured in the bedrock aquifer while in November of 2013, levels in the aquifer were about 1.3 m above the river level. These results show that a hydraulic connection exists between the river and aquifer but that groundwater levels may be influenced by regional levels; groundwater flow may be downward during high river levels (in particular when the river stage is higher than regional levels) and upward during low river levels when the regional groundwater levels remain higher than the river stage.

4.2.2 Overburden

A slight downward flow is evident between the alluvial soils on the east riverbank and the river in late November 2013 after the river has drawn down (TH 13-01). In May of 2013 however, the piezometric elevation measured in the silty sand at the forcemain south of the bridge on the east riverbank was considerably lower than the river stage (Elev. 223.3 m compared with a river Elev. of 226.3 m as seen in TH 12-02B). This reading is unexpected as groundwater levels in permeable riverbank soils are generally strongly influenced by river levels (i.e. higher levels in the silty sand would be expected at this river stage). The pneumatic piezometer installed in TH12-02B may be malfunctioning (common for pneumatic piezometers). In this regard, further instrumentation monitoring along the feedermain will be undertaken in the spring of 2014 to assess seasonal groundwater levels at a high river stage, especially in the alluvial soils.

5.0 Riverbank Stability Analysis

5.1 Design Objective

The design factor of safety (FS) associated with riverbank instabilities must reflect the uncertainty in parameters used in the analysis and the consequences of continued movements (e.g. creep movements) or failure of the riverbank. In this regard, riverbanks with a minimum FS greater than 1.3 are considered to be relatively stable, however, creep movements are possible. A factor of safety greater than 1.5 was therefore selected as the design objective for the stability of the ground through

which the feedermain passes since ground movements are unlikely to occur and in recognition of the consequences of a failure.

5.2 Slope Stability Analysis

A slope stability analysis was conducted on 5 cross-sections (Cross-Section A to E) along and near the feedermain to evaluate the riverbank stability in the vicinity of the feedermain. The cross-sections were generated from the survey information. The locations of the analyzed cross-sections are shown in plan on Drawing 01 and in section on Drawings 02 to 04. Iterations were performed to determine the set-back distance where the stability of the riverbank was greater than a Factor of Safety (FS) of 1.5 under typical groundwater conditions (*i.e.* to satisfy the design objective).

5.3 Numerical Model Description

The stability analysis was conducted using a steady-state finite element (FEM) seepage model (Seep/W) and a limit-equilibrium slope stability model (Slope/W) from the GeoStudio 2007 software package (Geo-Slope International Inc.).

The seepage model determined seepage gradients which were then incorporated into the stability model to calculate factors of safety against slope instabilities. Seepage gradients through the lacustrine and alluvial clays are common in riverbanks within Winnipeg; downward seepage occurs in the upper bank area, while upward seepage from the glacial till or bedrock aquifer occurs beneath the toe of the riverbank, in particular at low river levels. Consistent with the monitoring results, the groundwater elevation in the glacial till was assumed to be 1.3 m above the Winter River level for all modeling cases. Groundwater levels within the riverbank were set at approximately 2.0 m depth below ground surface in the upper bank area. A Winter River Level (WRL) at Elevation 221.8 m was used in the analysis. Flow in the unsaturated zone was not considered in the model.

The slope stability model used the Morgenstern-Price method of slices to calculate factors of safety. Critical local and global slip surfaces were determined using a grid and radius slip surface method. The soil units used in the model include the lacustrine soils (clay), alluvial soils, embankment fill, and till encountered on each bank as shown in Drawing 02. A till contact elevation of 212.0 m was assumed in both the seepage and stability models.

Table 5.1 lists soil properties used for the soil units in the numerical modeling. The soil properties assumed for the lacustrine soils are considered appropriate for Winnipeg clays along riverbanks which have experienced movements in the past. The strength properties selected for the alluvial soils are reflective of a clayey silt which is considered to be close to the lower bound of possible strength values for alluvial soils. The abutment fill properties were assigned identical properties as the alluvial soils. Properties assumed for the till are reflective of a loose to compact silt, sand and gravel matrix. The denser till and/or bedrock units are not incorporated as slip surfaces will tend not to extend into the till in any case; they typically run along the weaker clay at the till contact.

Table 5.1 - Soil Properties used in Stability Modeling

Soil Description	Unit Weight (kN/m³)	Cohesion (kPa)	Friction Angle (deg)	Hydraulic Conductivity (m/s)
Lacustrine Clay	17	5	14	1x10 ⁻¹⁰
Alluvial Soils	18	2	23	1x10 ⁻⁰⁹
Glacial Till	19	10	30	1x10 ⁻⁰⁷
Abutment Fill (Clay)	18	2	23	1x10 ⁻⁰⁹

5.4 Stability Modelling Results

The stability analysis was run on both sides of the channel to determine the minimum FS for each riverbank and the geometry of the theoretical slip surface associated with a minimum FS of 1.5. The analysis indicates the existing FS for both banks (for the critical slip surface) is greater than 1.3. The location of the point on the ground which coincides with a minimum FS of 1.5 is shown as a set-back in plan on Drawing 05 and in section in Drawing 06. The proposed entry/exit points for the new feedermain and the pipe alignment are located within the riverbank beyond these set-backs and the pipe profile remains outside of a theoretical slip surface associated with a FS of 1.5 (i.e. the stability of the ground at all points along the pipe alignment is greater than 1.5). An example slope stability model output has been included as Figure 03.

5.4.1 West Riverbank

Cross section B is perpendicular to a localized steeper portion of the riverbank as shown on Drawing 01. A minimum FS of 1.38 was calculated along Cross-section B with the entry point of a theoretical slip surface with a FS of 1.5 shown on Drawing 05. However, the minimum factors of safety for Cross-Section A and C, located on either side of the proposed feedermain, are greater than 1.5. Cross-sections A and C are cut perpendicular to the bank where the grades are flatter and considered more representative of the overall riverbank geometry at this location. In our opinion, the overall stability of the west riverbank in the vicinity of the proposed feedermain satisfies the design objective and therefore a set-back distance is not required.

5.4.2 East Riverbank

The minimum FS for at the east riverbank along Cross-section D and E is 1.34 and 1.35, respectively. Cross-section A was not analyzed since the section is not aligned perpendicular to the riverbank and therefore not considered to be representative. The entry point of theoretical slip surfaces along Sections D and E with a FS of 1.5 are shown as a set-back line on Drawing 05.

6.0 Geotechnical Considerations and Recommendations

6.1 Feedermain Alignment and Profile

The entry/exit points and profile for the proposed feedermain (Drawing 05 and Drawing 06) are located within the riverbank on both sides where the factor of safety against slope instabilities is greater than 1.5. Bank stabilization works are not considered necessary. If the profile on the east riverbank is modified to be within the set-back indicated, additional slope stability analysis will need to be undertaken to determine if riverbank stabilization measures are required.

6.2 Erosion Protection

A riprap blanket in the lower bank area was placed in 1970s based on recorded drawings and anecdotal information. The recorded drawing indicates that riprap was placed on each riverbank along the feedermain, and in the vicinity of the outfalls, but the extent and details of the riprap blanket are not clearly noted. The lower bank area was visually inspected in late October and early November 2013 during lower levels (Figures 04 & 05). Existing riprap was visible on the west riverbank as indicated on Drawing 05, however, the extent and integrity of the riprap could not be verified. There was no visual evidence of riprap on the east riverbank. It is suspected that the riprap on both banks may have been largely covered by river deposits over the years. Erosion of the lower bank area below an approximately elevation 226 m is evident on both riverbanks (Figures 04 & 05).

It is recommended that a riprap blanket be placed in the lower bank area to supplement the existing riprap and minimize the potential for toe erosion which will result in a reduction in stability over time. The riprap blanket should extend 1.5m below normal summer river level at an elevation of 222.6 m while the upper limit of the blanket will depend on areas requiring cover. The maximum recommended extent of the riprap blanket is illustrated in plan on Drawing 05 and in section in Drawing 07 and may be modified to suit site conditions during construction. The stability of the riverbank was re-assessed with the inclusion of a riprap blanket and had a negligible change in the calculated FS.

The riprap should consist of durable, quarried limestone with particle sizes ranging from 100 mm to 450 mm in diameter. The riprap should be placed on top of non-woven geotextile (Geotex 801 or equivalent) at a thickness of 0.75 m. Table 6.1 shows the proposed riprap gradation.

Table 6.1 – Riprap Gradation

Sieve Size	Percent Passing						
(mm)	Min	Max					
450	100	100					
300	25	50					
100	0	15					

Vegetation above the riprap blanket will help minimize erosion above and behind the blanket. Bare areas and areas disturbed due to construction activities above the riprap blanket will need to be revegetated. Topsoil and seeding or placement of sod is an acceptable means of re-establishing vegetation.

6.3 Excavations and Shoring

6.3.1 General

It is our understanding that excavations less than 5 m deep on either riverbank will be required for installation of the proposed feedermain and to make the necessary connections with the existing pipe. Open excavations and cantilevered walls may suitable for excavations up to 3 to 4 m. Braced walls may be required for deeper excavations where temporary shoring is necessary.

All excavations must be carried out in compliance with the appropriate regulation(s) under the Manitoba Workplace Safety and Health Act and in this regard, it is anticipated that trench cages and/or temporary shoring may be required. Where open excavations are made, flattening of side slopes may be required, in particular if saturated soils (silt and alluvial soils) are encountered. Gravel buttresses could be used to prevent wet silts and sands from flowing into excavations, in conjunction with sump pits used to dewater the excavation.

Considerable difficulties can be expected when advancing excavations below the water table in alluvial soils on the east side of the river. Depending on the depth of excavation, dewatering wells may be required to lower water levels to below the base of the excavation; the requirement for this will depend on water levels at the time of construction. Basal instability associated with groundwater pressure in the till is not expected to be of concern based on the anticipated excavation depth (<5m). Once the final design is complete the need for groundwater control, working mat, etc. can be reviewed and appropriate recommendations made at that time. In this regard, additional information on groundwater levels should be obtained when shoring design is carried out and during construction.

A certain amount of ground movement behind the shoring will occur, and is largely unavoidable. The amount of movement that will occur cannot be accurately predicted, mainly because the movement is as much a function of excavation procedures and workmanship as it is a function of theoretical considerations. It is anticipated that the design of temporary shoring will be the responsibility of the Contractor. The proposed shoring design should be reviewed prior to construction and the performance of the excavation system monitored during and subsequent to construction.

6.3.2 Cohesive Soils

In clay and clay fill soils, a bulk unit weight of 18.0 kN/m³ should be used for the clay/clay fill units, and 19.0 kN/m³ for clayer silts for the calculation of lateral earth pressures. Cantilevered (unbraced) walls should be designed using the earth pressure coefficients outlined in Table 6.2 for the appropriate earth pressure condition. Braced excavations in cohesive soils should be designed using the earth pressure distributions shown on Drawing 08. The effect of any surcharge loads must be

added to the force on the wall in addition to the calculated earth pressures, as noted in the figures. The appropriate earth pressure condition should be used to calculate the lateral earth pressure due to surcharge loads.

Table 6.2. Recommended Design Parameters for Cantilevered Walls - Cohesive Soils

Earth Pressure	Earth Pressure Coefficient					
Condition	Clay / Clay Fill					
Active (K _a)	0.5					
At-rest (K₀)	0.65					
Passive (K _p)	2.0					
	Clayey Silts					
Active (K _a)	0.4					
At-rest (K₀)	0.60					
Passive (K _p)	2.3					

6.3.3 Non-cohesive Soils

In non-cohesive soils (e.g. sands and gravels), cantilevered walls should be designed to resist lateral pressures based on a triangular earth pressure distribution defined as follows using the earth pressure coefficients (K) outlined in Table 6.3 for the appropriate earth pressure condition.

$$P = K \gamma D$$

Where P = lateral earth pressure at depth D (kPa)

K = earth pressure coefficient

 $\gamma = \text{soil/backfill unit weight (kN/m}^3)$

D = depth below ground surface (m)

A bulk unit weight of 21 kN/m^3 for silts and sands should be used for the calculation of lateral earth pressures where water pressure will not be present behind the wall. Where water pressures are present, the soil unit weight should be reduced to its submerged (buoyant) weight to calculate the lateral earth pressure and the water pressure should be added.

Table 6.3 Recommended Design Parameters for Cantilevered Walls in Alluvial Soils

Earth Pressure Condition	Earth Pressure Coefficient
Active (K _a)	0.35
At-rest (K₀)	0.5
Passive (K _p)	2.9

Braced excavations in the non-cohesive soils should be designed using the apparent earth pressure distribution shown on Drawing 09. Hydrostatic pressure below the water table and the effect of any surcharge loads must be added to the force on the wall in addition to the calculated earth pressures. The appropriate earth pressure condition should be used to calculate the lateral earth pressure due to surcharge loads.

6.4 Horizontal Directional Drilling

Horizontal Directional Drilling (HDD) may be affected by the following geotechnical considerations:

- Varying soil deposits above bedrock including lacustrine clay, alluvial soils, and silt till,
- Varying water levels in soil units and the potential for seepage, sloughing and caving in alluvial and till units below the water table,
- Varying bedrock conditions and strengths,
- Potential for hydro fracturing,
- Vertical fractures in the shallow bedrock may provide a seepage path for drill fluid to discharge into the river.
- Bedrock fractures may be infilled with clay (rock flour), particularly in zones of unsound bedrock

7.0 Permitting

Prior to construction, a City of Winnipeg Waterways permit is required. This report will form part of the application submission for the permit along with additional details related site access, stock piling and other pertinent construction activities that may impact riverbank stability.

8.0 Closure

The geotechnical information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation, laboratory testing, geometries). Soil conditions are natural deposits that

can be highly variable across a site. If sub-surface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work, or a mutually executed standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of Associated Engineering (the Client) and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.

9.0 References

Bannatyne, B.B, 1988. Dolomite Resources of Southern Manitoba. Manitoba Energy and Mines Geological Services, Economic Geology Report ER85-1

Figures

Figure 01: TH13-01 Core Samples

Figure 02: TH13-05 Core Samples

Z:\Projects\0115 Associated Engineering\0115 004 00 Detailed Design North Kildonan Feedermain\2 Design\2.7 Modelling\29/11/2013 4:42:36 PM

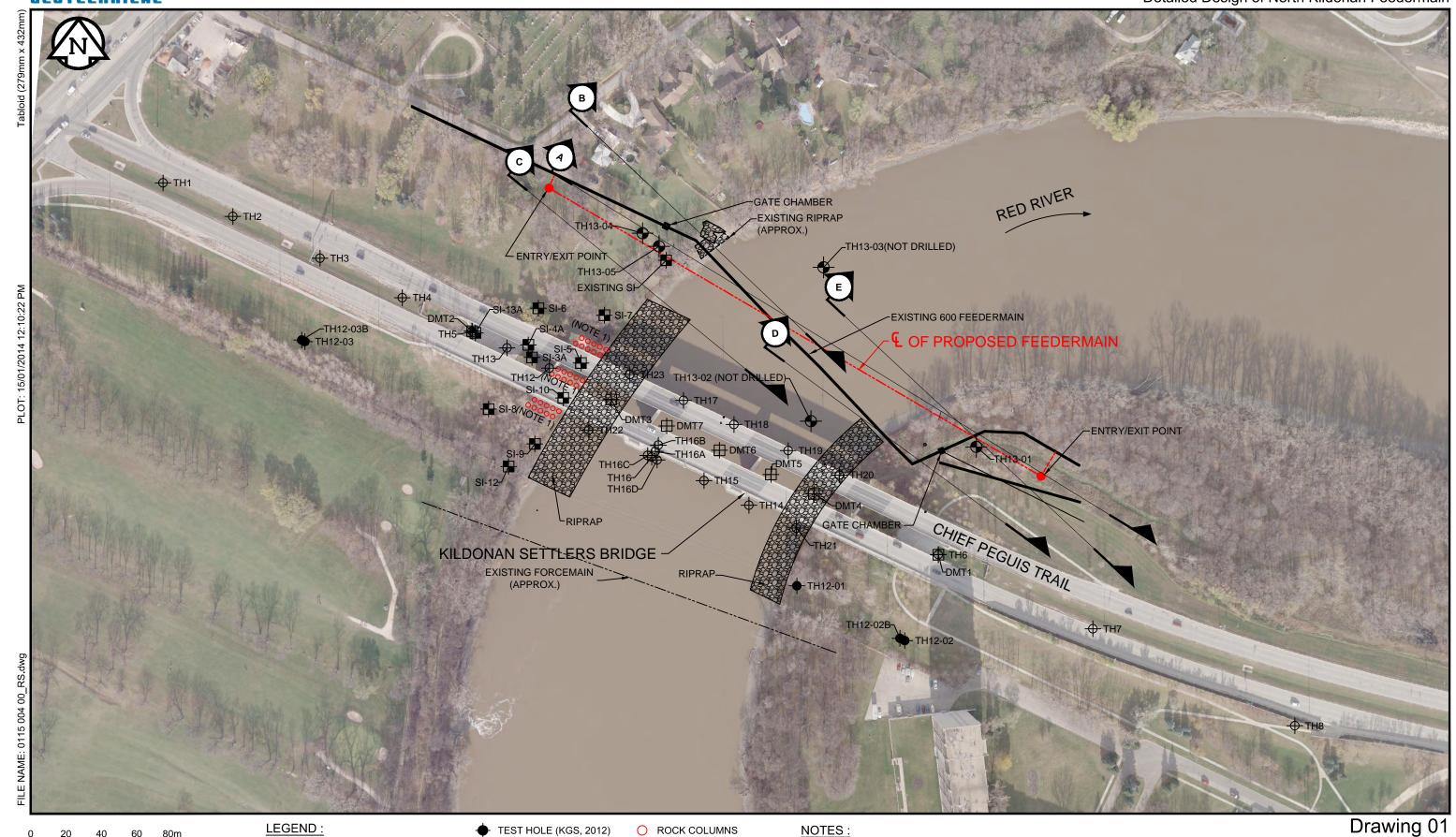
Figure 03 Slope Stability Model Output

Figure 04: West Riverbank (October 23, 2013)

Figure 05: East Riverbank (November 8, 2013)

Drawings

Test Hole Location Plan



SCALE: 1:2000 (279mm x 432mm)

TEST HOLE (TREK, 2013)

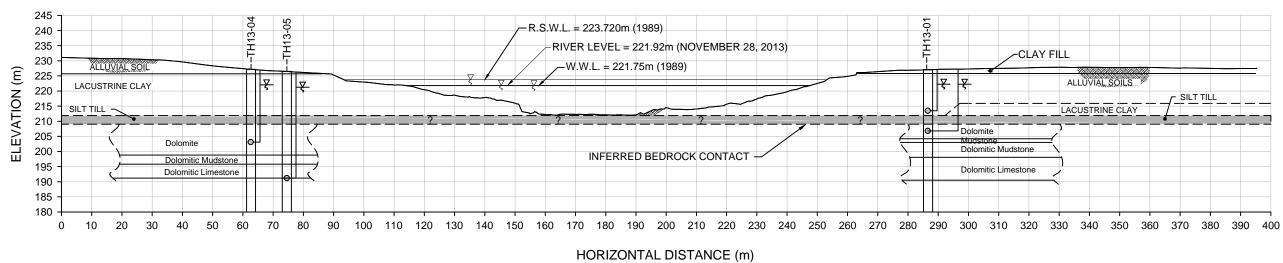
TEST HOLE (DYREGROV, 1988)

♣ SLOPE INDICATORS

ROCK COLUMNS SHOWN ARE NOT TO SCALE

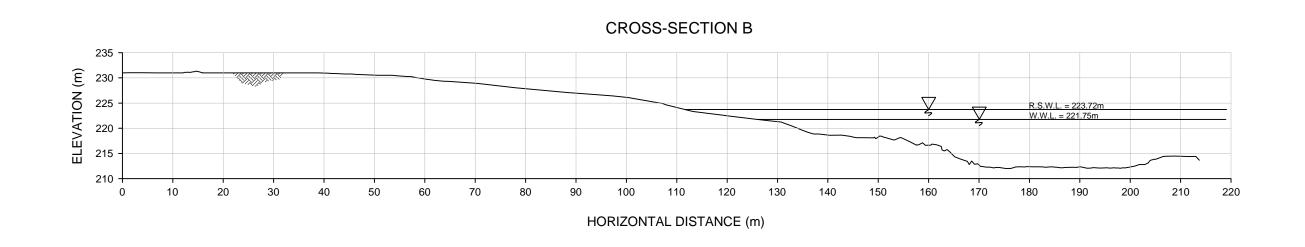
2008 AERIAL IMAGE IN PROVIDED BY CITY OF WINNIPEG

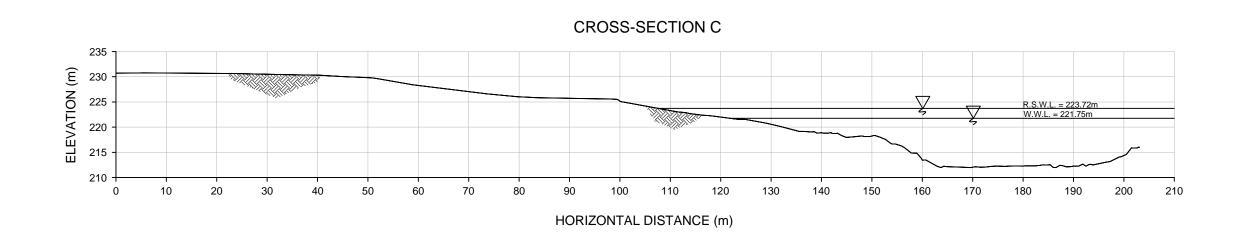
SURVEY INFORMATION PROVIDED BY BARNES AND DUNCAN LAND SURVEYERS AND CITY OF WINNIPEG (LIDAR)



CROSS-SECTION A

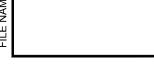
NOTE:



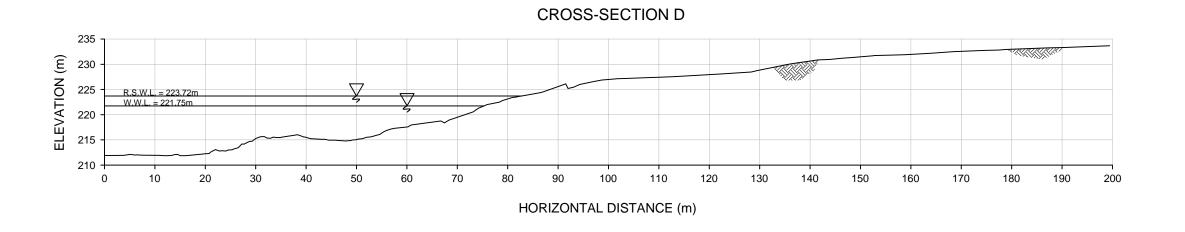

GROUND WATER LEVEL IN STANDPIPE PIEZOMETER NOVEMBER 28, 2013

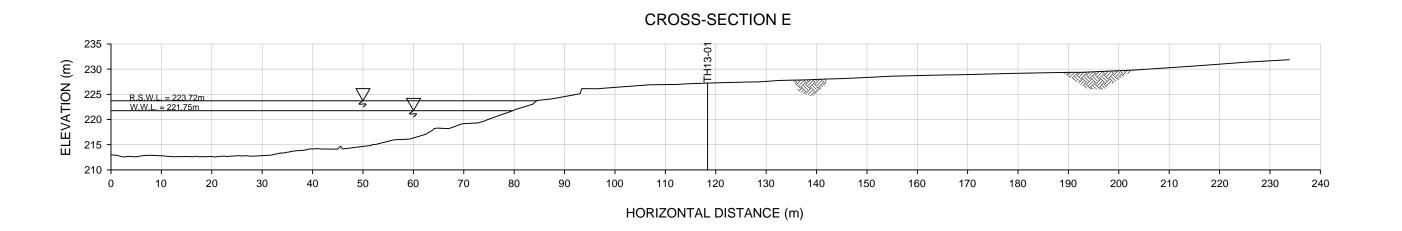
W.W.L. = WINTER WATER LEVEL

R.S.W.L. = REGULATED SUMMER WATER LEVEL



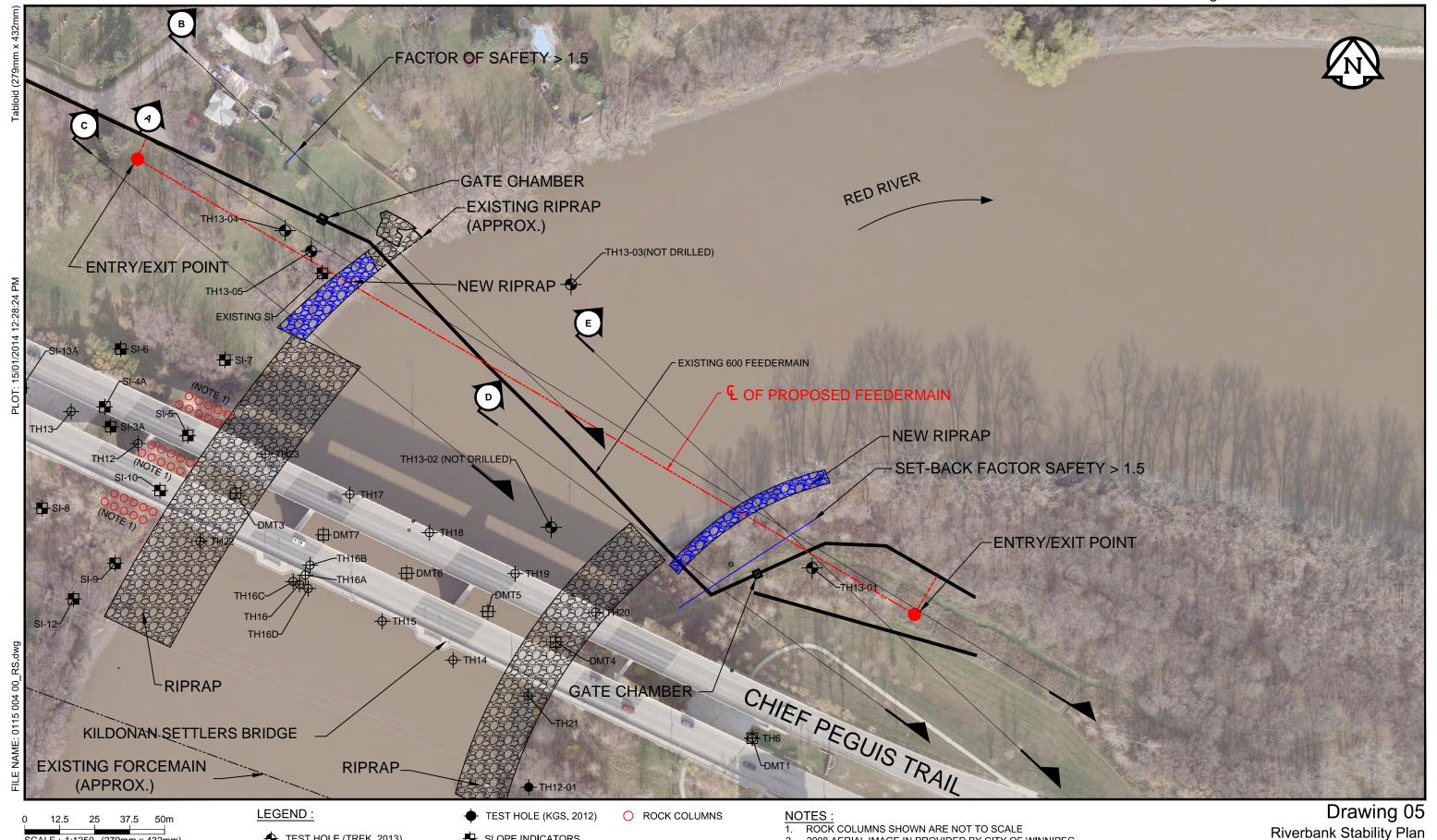
0 7.5 15 22.5 30m SCALE : 1:750 (279mm x 432mm) Drawing 03 CROSS-SECTION B AND C





SCALE: 1:750 (279mm x 432mm)

22.5 30m



SCALE: 1:1250 (279mm x 432mm)

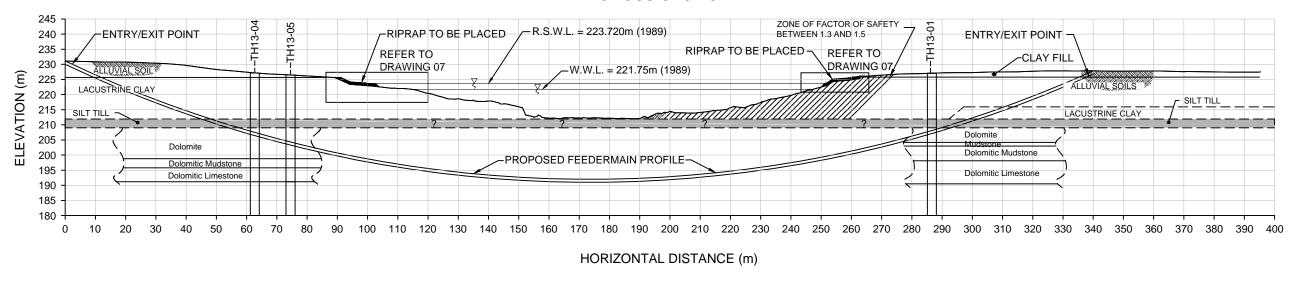
TEST HOLE (TREK, 2013)

TEST HOLE (DYREGROV, 1988)

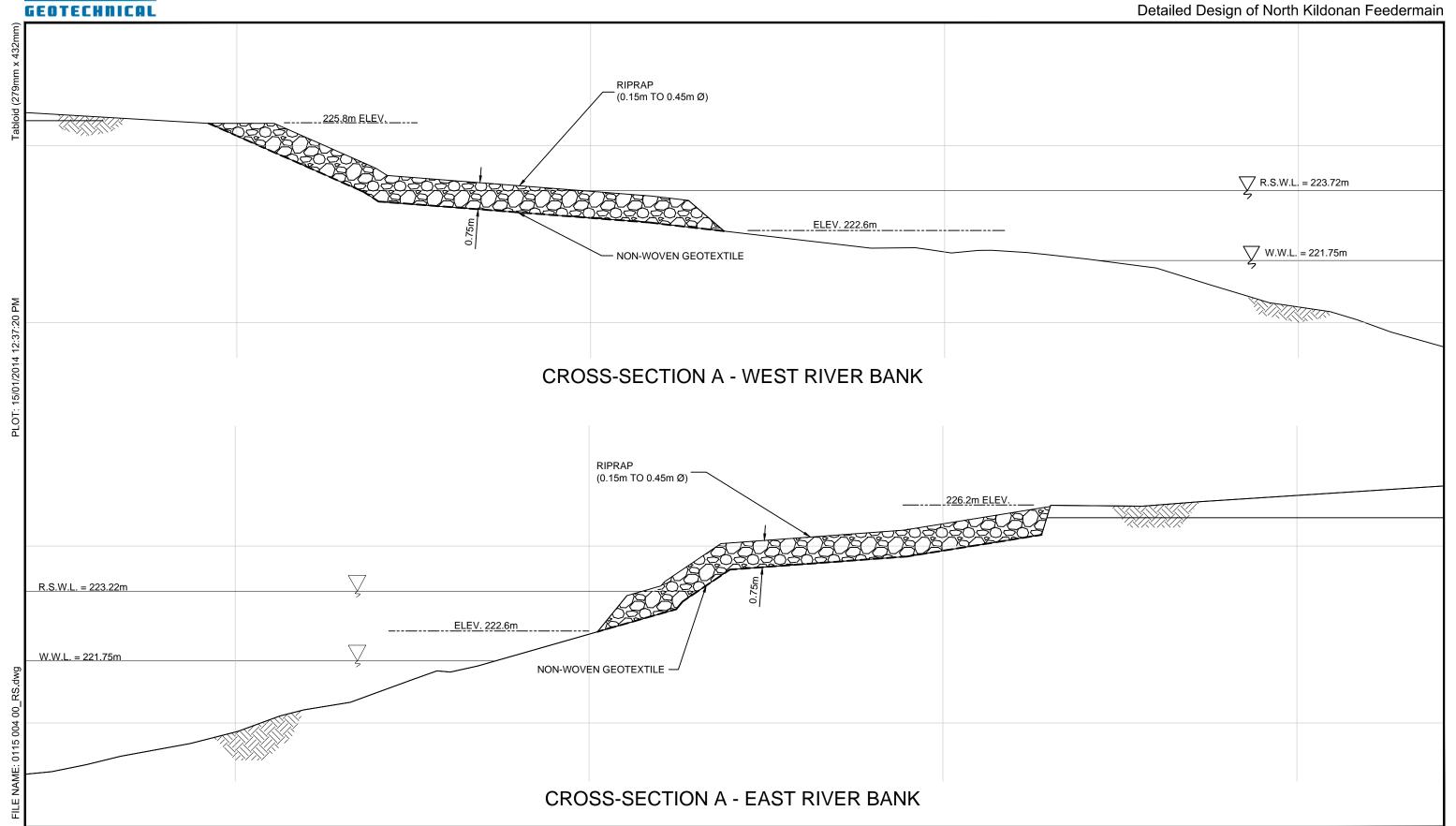
♣ SLOPE INDICATORS

2008 AERIAL IMAGE IN PROVIDED BY CITY OF WINNIPEG

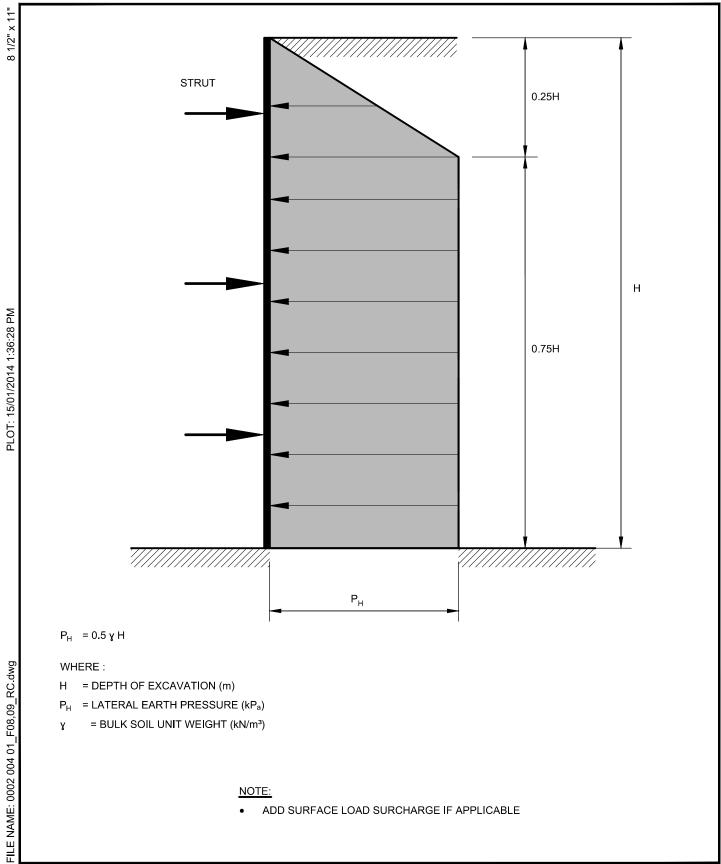
AND CITY OF WINNIPEG (LIDAR)


SURVEY INFORMATION PROVIDED BY BARNES AND DUNCAN LAND SURVEYERS

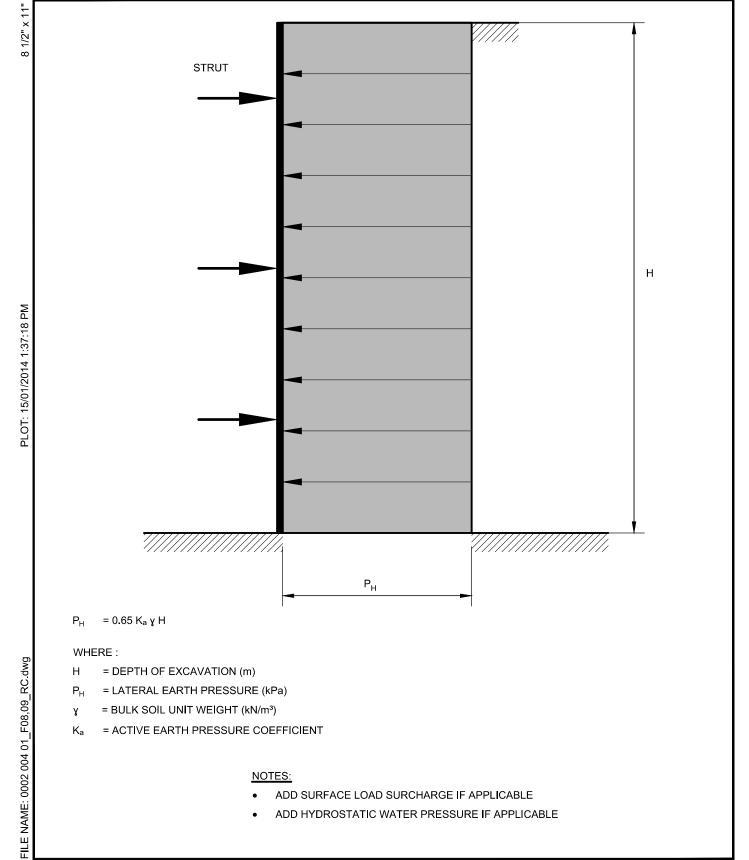
PLO1: 15/01/2014 12:36



CROSS-SECTION A



SCALE : 1:100 (279mm x 432mm)



Drawing 08

Lateral Earth Pressure Distribution
Braced Excavation in Cohessive Soil

ADD HYDROSTATIC WATER PRESSURE IF APPLICABLE

Drawing 09

Lateral Earth Pressure Distribution Braced Excavation in non-Cohessive Soil

Αŗ	g	en	di	ix	A

Test Hole Logs

1 of 3

GEOTECHNICAL

Sub-Surface Log

(:lient:		Δοορο	iated En	aineeri	na				Project N	Jumh	er.	0115	004 00	1						
Client: Proiect N	_					Feedermain			Location						43, E-6	36644	43			
Contract	_		ck Drillir		T T GIGOTIGIT I	Codominant			Ground I					1000.	10, 2 0	00011.				
Method:	_				see notes for	drilling method	1)		Date Dril				ember	2013						
	ample Ty		JO HOOK	ount (Grab (G)	The state of the s	_	/ Tube (T)	Split Spoon (SS) Split Barrel (SB) Core (C)						\(C\					
										_							_			
Par	article Siz	ze Leg	end:		Fines	Clay		Silt	[000	San		Filter Pa	Grav	el		Cobble	S N	7G B	oulders	í
Bad	ackfill Le	gend:			Bentonite	(Cement		Drill Cutting	gs [Sand	ack		Grou		2		ugh	
Elevation (m) Depth	(m)	Standoine	Standpipe	Ĉ CL AN	/ (EU I.) - ci	MATERIAL			organica	Sample Type	Sample Number	RQD (%)	SPT (N)	16 17	Particle Si 40 L MC	13) 19 20 ize (%) 60 80	100	Stre	rained Si ength (kl est Type Torvane ocket Pe Qu Qu ield Van	Pa) e en. Φ l ee ○
CLAY (FILL) - silty, trace gravel (<25mm), trace org trace silt inclusions (<20mm) - brown - moist, frozen to 1.1m, stiff when thawed - 1 - ligh plasticity					organics,		G29 G30													
225.8	2			CLA\ trace	/ (ALLUVIA organics (re	L) - silty, soi oots)	me fine to	o medium g	rained sand,	,	G31 G32									•
224.6				SILT	- moist, stif - intermedi	ff ate plasticity .) - trace clay		y, trace fine	e and											
	3	ANCENCE OF THE PARTY OF THE PAR		medi	um grained - brown - moist, ver	sand, trace	organics	(roots)			_G33 T34			H	•10			⊠ ∠	^ •	
- - - -	5			g g g g - san	dy and wet	below 5.0 m					G35 SB36A				•					
- 6	6	ASSESSES OF THE SECOND OF THE									SB36B SB36C SB37A				•					
	7 -	KONSONSONS		4	below 6.6 r	m					SB37B/ SB37C/				•					
219.0	8 –			<u> </u>	O (ALLUVIA	AL) - silty, tra	ace to sor	ne clay to 1	0.7m	$-\Box$	SB38A				•					
	9 -				brownwet, looseno plastic	9					SB38B		_)					
<u>-</u> 1	10-	CARCINCARCA		7 7 7 9 - no (clay, some s	silt below 10.	.7 m				SB39				• :	•••••	• • • •			
	1	THEREST								X	SB40									

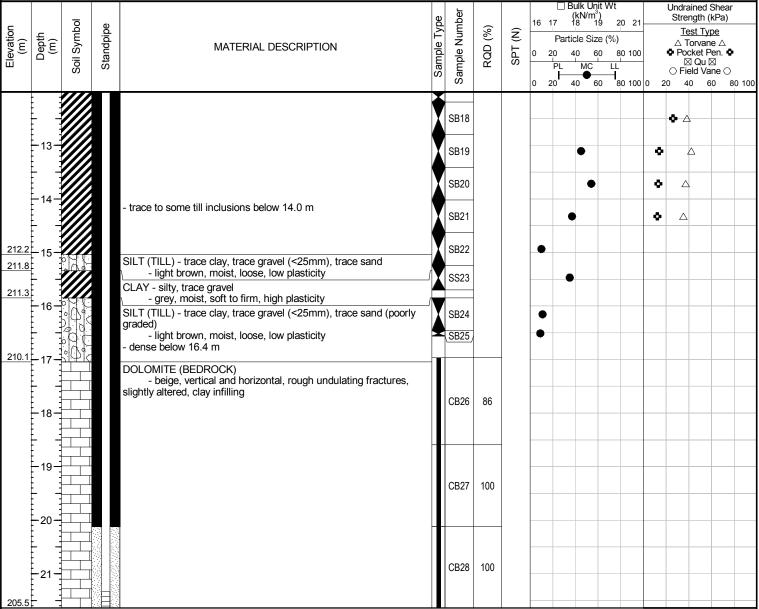
2 of 2

Sub-Surface Log

		-	ĭ	E	Sub-Surface	L	.OÇ)								2013
GE	OT	EC	H	IIC	AL		e				∃ Bulk U	Init Wt			rained Sength (F	
Elevation (m)	Depth (m)	Soil Symbol	Standpipe	Standpipe	MATERIAL DESCRIPTION	Sample Type	Sample Number	RQD (%)	SPT (N)	16 17 0 20 P 0 20	L MC	ize (%)			est Typ Torvane ocket Po Qu Dield Varied Va	oe e △ en. Φ ☑ ne ○
215.2 214.6					CLAY (ALLUVIAL) - silty, some fine to medium grained sand, trace organics (roots) - brown		T41				• •			-0	. 🛛	
	-13-				- brown - moist, stiff - intermediate plasticity SAND (TILL) - trace silt, trace clay		SB42A			•						
	14-				- brown - wet, loose - no to low plasticity - poorly graded, fine and medium grained sand	À	SB42B									
	15				- dense below 14.6 m	Y	SB43					• • • • •				
					- trace till inclusions (<20mm) below 15.7 m	ŧ	SS44		29			• • • •	•••			
	-16-						SS45B SS45A		50	•						
	17-				- boulder at 16.7 m											
209.2	-18-				DOLOMITE (BEDROCK) - beige, vertical and horizontal, rough undulating		CB56									
	19				fractures, slightly altered, clay infilling		CB57	75	_							
	-20-								_							49100
	-21-				- 0.1 m clay (rock flour) seams between 20.7 m and 20.8 m		CB58	30								
	-22				- 0.2 m clay (rock flour) seams between 21.6 and 21.8 m - yellowish fractured limestone between 21.8 to 24.3 m		CB59	0	_							
204.2	23				MUDSTONE (BEDROCK)			-	_							
	-24				- beige to brown, layered to varved, highly fractured with clay infill.		CB60	17								
203.0	25				DOLOMITIC MUDSTONE (BEDROCK) - mottled light brown to grey, minor rough undulating sub vertical fractures.				-							
	-26-						CB61	91								
	20															
Logg	ed By:	Step	hen l	Renner	Reviewed By: Nelson Ferreira			_	Proje	ct Engi	neer:	Nelsor	n Ferre	ira		

SUB-SURFACE LOG 0115 004 00 DETAILED DESIGN NORTH KILDONAN FEEDERMAIN - LOGS.GPJ TREK GEOTECHNICAL.GDT 15/1/14

Elevation (m)	Depth (m)		Soll Symbol	Standpipe	Standpipe	MATERIAL DESCRIPTION	Sample Type	Sample Number	RQD (%)	SPT (N)		Partic 20 4		3) 19 ze (%) 60	20 21) 80 100		Stren Tes A To Pool Fiel	ned She gth (kPa st Type orvane ∆ ket Pen. Qu ⊠ d Vane 60	<u>`</u>
198.1	-27 -28					- chalk nodules at 26.8 m		CB62	96										
	30-					DOLOMITIC LIMESTONE (BEDROCK) - beige to grey mottled, some chert nodules (grey) in a dolomitic limestone matrix (beige), vuggy.		CB64	73										31200 [21800 [
	31-							CB65	35	-									1000 k
	33-					- 0.3 m thick highly fractured layer at 33.5 m		CB66	31	_									
	35-					- fractures decreasing below 34.7 m		CB67	74	_								3	33100 [
190.5	36-					END OF TEST HOLE At 36.9 m in DOLOMITIC LIMESTONE (BEDROCK)		CB68	94										
190.5						Notes: 1) Power auger refusal at 16.9 m depth. 2) Seepage observed below 5.3 m 3) Water level at 1.5 m depth immediately after dilling prior to coring. 4) Test hole drilled using solid stem auger up to 4.6 m then switched to hollow stem auger. At power auger refusal, switched to HQ coring.													
Logg	ed By	r: _S	Stepl	hen R	enner	Reviewed By: Nelson Ferreira				Projec	et En	ginee	er: _	Nels	on Fe	reira			


- 1) Power auger refusal at 16.9 m depth.
 2) Seepage observed below 5.3 m
 3) Water level at 1.5 m depth immediately after dilling prior to
- 4) Test hole drilled using solid stem auger up to 4.6 m then switched to hollow stem auger. At power auger refusal, switched to HQ coring.

Logged By:	Stephen Renner	Reviewed By:	Nelson Ferreira	Project Engineer:	Nelson Ferreira

_																									
Clien				d Engineeri						_	ct Nu	mber)115 (_
Proje	ct Nan				h Kildonan	Feederm	ain			Loca	tion:		_(JTM	N-55	34987	7.21,	E-636	3455.	82					_
Cont	ractor:	Paddo	ock [Orilling Ltd.						Grou	nd Ele	evatio	on: _2	227.19	9 m										_
Meth	od:	_Acker S	SS3 1	Track Mount ((see notes for	drilling me	thod)			Date	Drille	d:	_6	Nov	embe	201	3								_
	Sample	e Type:			Grab (G)			Shelby 7	Гube (Т)		Split S	poon	(SS)		Sp	lit Ba	rrel ((SB)		Cor	re (C)			
	Particle	e Size Leg	jend:		Fines		Clay		Silt	.	;;; s	and			Gra	vel	5	-> c	obble	es	H	Во	ulders	3	
	Backfil	I Legend:			Bentonite		Cen	nent		Drill Cu	ıttings		Fi	ilter Pa	ick		•	Grout		- E	2 29	Slou	gh		
							<u> </u>					,		anu				ulk Unit				Undra	ined S		_
5	_	<u> </u>	2									ype y		(%	<u> </u>	16 1		(kN/m³) 18 19		0 21			ngth (k st Typ		
Elevation (m)	Depth (m)	Soil Symbol	orandpibe		M	ATERIAL	DESC	CRIPTIC	N			Sample Type	2	RQD (%)	⊢			cle Size 40 60		0 100			orvane ket Pe		
H		Soil	o B									Sam	<u> </u>	S	S		PL	MC	LL	- 100		Σ	Qu⊠ eld Van	l	
												0	Š			0 2	0 4	40 60	80	0 100					10
	: :				.UVIAL) - si nics (roots a			, trace f	ine sand,	trace to															
				- dark	brown st, very stiff		,					G.	46				•								
	1 -				plasticity																				
225.7	. :											G	17				•								>>
				CLAY (LAC	CUSTRINE)	- silty to	2.4m,	some gr	avel, trac	e fine sa	and,														
	2 -			race organ - dark	ics (roots á brown, moi	na rootiet st, soft to	is), trad o firm, h	ce oxida high pla:	tion sticity		•	G/ SE	18					-)	+	•	♣△	Δ		
					0. 4) SE	101												
				grey below trace silt in	w 2.4 III nclusions (<	<15mm) a	and sof	ft below	2 7 m			SB						•			•	ê △			
	- 3 -			trado one n	, iolidolorio (ana 001	100.011	2.7				19												
	F =											T	03							_		۰	Δ		
			-	firm to stif	ff, trace to s	ome oxid	lation b	elow 3.	7 m			SB	04									o			
	Z 4																						,		
												SB	05					•		+		• △			
	5 -												+												
												SE	06					•			9	• △			
											ľ	SB	07					•			•				
	6 -		-	trace coar	rse sand be	low 5.8 m	า				4		07							\dashv	7	- 2			
												T	08			ŀ						• /			
	1 :											V-	\dashv												
	7 -											SE	09					•		\dashv					
	Ē -		-	trace grav	vel (<25mm) below 7	.3 m					SB	10									^			
													10								•	\triangle			
	- 8 -		■-	trace to so	ome silt incl	usions (<	<15mm	ı) below	7.9 m			SE	11					•				• △			
											(+					_
	9 -											SE	12					•			٠	Δ			
												Π,	12									. .	,		
	F :											T.	13									o Ø	1		
	10-										ľ	X SB	14				•			\dashv	۰	Δ			
				trace till in	nclusions (<	75mm) h	elow 1	0.4 m					\dashv												
	= =			a doc tili III	15/45/5/15 (JOVV I	V.→ III				SB	15					•			ı	• 4	7		
	-11-												10							\dashv					
	Ē -											SB	16					•			9				
	į :											SE	17					•			•	• ∠	_		
				nner		Re		-			Li Cara							er: N							_

GEOTECHNICAL

END OF TEST HOLE at 21.6 m in DOLOMITE (BEDROCK) Notes:

1) Power auger refusal at 16.7 m.

SUB-SURFACE LOG 0115 004 00 DETAILED DESIGN NORTH KILDONAN FEEDERMAIN - LOGS.GPJ TREK GEOTECHNICAL.GDT 15/1/14

- 2) No seepage or sloughing observed.
- 3) Water level at 4.2 m depth immediately after drilling prior to coring.
- 4) Test hole drilled using solid stem augers to 16.7 m then drill method switched to HQ coring.

Logged By: Stephen Renner Reviewed By: Nelson Ferreira Project Engineer: Nelson Ferreira

														00.										
	ient:				ed Enginee	-				Project N		ber:		004 0										_
	-						Feedermain			Location				N-55	3497	9.78,	E-63	6465.	.14					_
Co	ontra	ctor:	Pa	ddock	Drilling Ltd	<u>. </u>				Ground E	Eleva	ation:	226.2	26 m										_
Me	etho	d:	CN	IE-850	Track Mount ((see notes for	drilling method)			Date Dril	led:		<u>15 N</u>	ovemb	er 20	013								
	S	Sample	Type:			Grab (G)		Shelby	y Tube (T)	Split	Spo	on (S	S) 🕨	Sp	olit Ba	arrel ((SB)		Co	re (C	;)			
	F	Particle	Size I	_egenc	d: :t	Fines	Clay		Silt	• • • • •	San			3		_	<u>}</u>	Cobble	es	X	Во	ulders	3	
	Е	Backfill	Leger	nd:		Bentonite		Cement		Drill Cutting	gs [Filter F Sand	ack			Grout		<u> </u>		Slou			
			_								ø	ber			16	□ B	ulk Un (kN/m³ 18 1	it Wt	0 21		Undrai Stren	ined S igth (k		
tion	(m)	₽ _	Soil Symbol	Standpipe							Sample Type	Sample Number	(%)	ĝ	10		cle Siz		0 21			st Typ orvane		
eva	Ē	Depth (m)	Sy	and		M	ATERIAL DE	SCRIPT	ION		Jple	l e	RQD (%)	SPT	0 :	20 4	10 6		0 100		Poc ⊠	ket Pe	n. 💠	
Ш			So	S							Sar	am	<u> </u>	0)		PL	MC	LL			○ Fie	ld Var	ie 🔾	
\vdash				• 1 6 2	<u> </u>							S			0	20 4	10 6	0 80	0 100	0 2	0 40) 60) 80	100
	E	}			- overburde - drilling ac	en soils not dvanced to r	logged ower auger re	efusal th	en drillina r	nethod														
	F	. =			switched to	o HQ coring	J		Ü															
	E	- 1 🚽																						
	ŧ	‡																						
	F																							
	F	- 2 -																						
	Ē	.]																						
4	ŧ	‡																						
12/1	F	- 3 -																						
GDT	<u> </u>	Z =																						
ICAL.	₽	· .]																						
CHN	F	- 4 -																						
EOTE	Ē																							
EK G	Ē	- 5 -																						
디	Ē																							
GS.GF	E																							
01- N		6 -																						
RMAII	Ė	. 🚽																						
EDE	E	- 7 🗐																						
IAN FI	Ē	. 🖠																						
EDO	Ė	1																						
Ä H K	Ī	- 8 -																						
Š Z	Ē	- 🚽																						
ESIGI	E	- 9 📑																						
EDD		. 🖠																						
ETAIL	Ė	1																						
90 0	Ē	-10																						
15 00	-	- =																						
G 01	-	-11-																						
Ď Ņ	Ī	1																						
IRFAC	-	• ‡																						
SUB-SURFACE LOG 0115 004 00 DETAILED DESIGN NORTH KILDONAN FEEDERMAIN - LOGS.GPJ TREK GEOTECHNICAL.GDT 15/1/14	ogge	d By:	Mart	ial Len	noine		Reviev	ved By:	Nelson F	erreira	1	I	_	Projec	t En	gine	er: 1	Velso	n Fei	reira				

Test Hole TH13-05 Sub-Surface Log GEOTECHNICAL □ Bulk Unit Wt **Undrained Shear** Sample Number Strength (kPa) Sample Type 16 20 21 Soil Symbol Standpipe % Test Type \widehat{z} Depth (m) Particle Size (%) △ Torvane △ • Pocket Pen. • RQD (MATERIAL DESCRIPTION SPT (20 40 60 80 100 ○ Field Vane ○ 20 40 60 80 100 0 20 40 60 80 100 210.1 210.0 SILT (TILL) - trace clay, trace sand, trace gravel SS69 - light grey, moist, loose, no to low plasticity 0 CB70 DOLOMITE (BEDROCK) - beige, vertical and horizontal, rough undulating fractures, slightly altered, clay infilling 208.7 **CB71** 38 SUB-SURFACE LOG 0115 004 00 DETAILED DESIGN NORTH KILDONAN FEEDERMAIN - LOGS.GPJ TREK GEOTECHNICAL.GDT 15/1/14 DOLOMITE (BEDROCK) beige to light grey layering, massive, minor vugs, minor vertical and horizontal tight fractures CB72 73 39500 20 **CB73** 95 39500 CB74 83 visible hairline fractures between 22.9 m to 24.4 m **CB75** 98 201.9 DOLOMITE (BEDROCK) - beige layers with light brown mottled and cream coloured

CB76

CB77

92

75

Project Engineer: Nelson Ferreira

layers, massive, minor vertical and horizontal tight fractures

Reviewed By: Nelson Ferreira

25

Logged By: Martial Lemoine

3 of 3

Sub-Surface Log

198.8 DOLOMITIC MUDSTONE (BEDROCK) - mottled light brown to grey, light brown mottles are soft calcareous mudstone, grey mottles are hard dolomite, trace chert nodules, vuggy, rough undulating sub vertical fractures 0.1 m thick clay (rock flour) seam at 28.7 m CB78 69 CB78 CB79 92	[]	(m)	Depth (m)	Soil Symbol	Standpipe		MATERIAL DESCRIPTION	Sample Type	Sample Number	RQD (%)	SPT (N)	0	17 Par 20 PL	Bulk Un (kN/m 18 rticle Si 40 MC 40	n³) 19 ze (% 60 LI	20 21) 80 100	Strei	ined Shapth (kF st Type orvane cket Per I Qu ⊠ eld Vane 0 60	Pa) . •
DOLOMITIC MUDSTONE (BEDROCK) - mottled light brown to grey, light brown mottles are soft - calcareous mudstone, grey mottles are hard dolomite, trace chert nodules, vuggy, rough undulating sub vertical fractures 0.1 m thick clay (rock flour) seam at 28.7 m CB79 92 CB79 92 CB79 92 DOLOMITIC LIMESTONE (BEDROCK) - beige to grey mottled, some chert nodules (grey) in a dolomitic limestone matrix (beige), vuggy, minor, very rough, angular, subhorizonal fracturing. CB81 100			-27-																
195.8 DOLOMITIC LIMESTONE (BEDROCK) - beige to grey mottled, some chert nodules (grey) in a dolomitic limestone matrix (beige), vuggy, minor, very rough, angular, subhorizonal fracturing. CB80 100 CB81 100		198.8				. (- mottled light brown to grey, light brown mottles are soft calcareous mudstone, grey mottles are hard dolomite, trace chert nodules, vuggy, rough undulating sub vertical fractures 0.1 m thick		CB78	69									
DOLOMITIC LIMESTONE (BEDROCK) - beige to grey mottled, some chert nodules (grey) in a dolomitic limestone matrix (beige), vuggy, minor, very rough, angular, subhorizonal fracturing. CB80 100 CB81 100									CB79	92									11900 🛭
CB81 100		195.8				. (- beige to grey mottled, some chert nodules (grey) in a dolomitic limestone matrix (beige), vuggy, minor, very rough,		CB80	100									
END OF TEST HOLE At 35.1 m in DOLOMITIC LIMESTONE (BEDROCK) Notes: 1) Power auger refusal at 16.2 m. 2) No seepage or sloughing observed. 3) Water level at 3.7 m depth immediately after dilling prior to coring. 4) Test hole drilling using soid istem augers to 16.2 m then drilling method switched to HQ coring.	41		-32-				g,		CB81	100									
END OF TEST HOLE At 35.1 m in DOLOMITIC LIMESTONE (BEDROCK) Notes. 1) Power auger refusal at 16.2 m. 2) No seepage or sloughing observed. 3) Water level at 3.7 m depth immediately after dilling prior to coring. 4) Test hole distem augers to 16.2 m then drilling method switched to HQ coring.	CAL.GDT 15/1/		- 33-						CB82	99									
END OF TEST HOLE At 35.1 m in DOLOMITIC LIMESTONE (BEDROCK) Notes: 1) Power auger refusal at 16.2 m. 2) No seepage or sloughing observed. 3) Water level at 3.7 m depth immediately after dilling prior to coring. 4) Test hole drilled using solid stem augers to 16.2 m then drilling method switched to HQ coring.	J TREK GEOTECHNI	101 2							CB83	85									
α	FACE LOG 0115 004 00 DETAILED DESIGN NORTH KILDONAN FEEDERMAIN - LOGS.G					(BEDROCK) Notes: 1) Power auger refusal at 16.2 m. 2) No seepage or sloughing observed. 3) Water level at 3.7 m depth immediately after dilling prior to coring. 4) Test hole drilled using solid stem augers to 16.2 m then drilling												

- 1) Power auger refusal at 16.2 m.
 2) No seepage or sloughing observed.
 3) Water level at 3.7 m depth immediately after dilling prior to coring.
- 4) Test hole drilled using solid stem augers to 16.2 m then drilling method switched to HQ coring.

Append	xib	В
---------------	-----	---

Test Hole Logs (By Others)

LOGGED/DWN. SDG CKD.	NCB	DATE OF INVEST. 6/08/87 JOB NO.	87422	HOLE NO. 1
WATER CONTENT Wp-□ W-O WL-△.	DEPTH SAMBOL	SOIL DESCRIPTION DATUM Geodetic	SOIL SAMPLE	DRILL TYPE 450 & 500 r Augers
PERCENT % 10 20 30 40 50 60	Solt 8	SURFACE ELEVATION 230.63 m	CONDITION TYPE FENETRATION HE SISTANCE	OTHER TESTS
	-1 -2 -3 -4 -5 -6 -7 -8	Fill Clay -black Clay -silty -brown -stiff -alluvial Silt -tan -wet to saturated -firm Clay -mottled brown -highly plastic -stiff -lacustrine End hole at 7.6 m. Seepage and caving from 2.4 to 2.7 m.		qu=109.7kpa Y _w =16.48kn/ pp=146.0kpa Tv=84.7kpa

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor SDG NCB LOGGED/DWN. CKD. DATE OF INVEST. 6/08/87 JOB NO. 87422 HOLE NO. DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE PENETRATION RESISTANCE 450 &500 mm Wp -W-O WL-A. DEPTH DATUM Geodetic Augers PERCENT % (M) SURFACE ELEVATION 230.91 m OTHER TESTS 20 50 0 Fill -clay, silt, some gravel Clay -black -1 Clay -silty -brown -stiff -2 Silt -tan -3 -saturated -4 Clay -mottled brown -highly plastic -firm to stiff qu=47.2kpa -lacustine $Y_{W} = 16.51 \, \text{kn/m}^{3}$ - 5 pp=93.4kpa Tv=81.2kpa 6 7 qu=150.1kpa U $Y_{w} = 16.85 \text{kn/m}^{2}$ -8 grey pp=125.4kpa Tv=77.8kpa 9 -10 qu=131.8kpa End hole at 10.7 m. -11 U $V_{w} = 17.60 \text{kn/m}$ Seepage and caving from silt layer pp=117.8kpa Tv=60.3kpa Plate A-3

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor DATE OF INVEST. 6/08/87 CKD. LOGGED/DWN. JOB NO. 87422 HOLE NO. SDG NCB DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE PENETRATION DATUM Geodetic Wp - 0 w-0 WL - A. DEPTH 500 mm Auger PERCENT % (M) SURFACE ELEVATION 230.58 m OTHER TESTS 30 40 50 10 20 Jopsoil Clay -silty -brown -1 -stiff 2 Silt -tan -wet to saturated -3 qu=57.4kpaClay -mottled brown $Y_{w} = 16.40 \text{kn/m}$ U -highly plastic -stiff to firm 4 pp=132.9kpa -lacustrine Tv=71.3kpa 5 --grey- 6 qu=117.3kpa U $\chi_{w} = 16.27 \text{kn/m}$ pp=119.7kpa Tv=74.7kpa7 8 1 qu=148.5kpa - 9 $y_{W} = 16.81 \text{kn/m}$ U pp=95.8kpa - 10 Tv=60.6kpa - 11 qu=147.3kpa - 12 $V_{W} = 16.58 \text{kn/m}^3$ pp=68.9kpa Tv=54.6kpa 13 End of hole at 13.7 m in clay. Plate A-4

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor DATE OF INVEST. HOLE NO. 4 LOGGED/DWN. CKD. JOB NO. SDG NCB 6/08/87 87422 DRILL TYPE CONTENT WATER SOIL DESCRIPTION SOIL SAMPLE SYMBOL 450 & 500 mm DEPTH DATUM Wp - [W-0 WL - A. Geodetic Augers PERCENT % SURFACE ELEVATION 230.64 m (M) OTHER TESTS 50 0 Fill -clay -concrete rubble - 1 Clay -silty -brown - 2 Silt -tan -wet to saturated - 3 Clay -mottled brown -highly plastic
-stiff to firm -lacustrine 4 $\gamma_{W}=16.30 \text{kn/m}$ pp=108.9kpa 5 Tv=57.4kpa -grey qu=135.1kpa U $y_{w} = 17.00 \text{kn/m}^{3}$ 8 pp=147.5kpa Tv=72.8kpa 9 10 qu=106.7kpa -11 $V_{W} = 16.72 \text{kn/m}$ pp=93.8kpa Tv=56.0kpa -12 13 Plate A-5

BOREHOLE LOG PROJECT Kildonan Corridor

DYREGROV & BURGESS

LOGGED/DWN.	SDG	CKD.	NCB		DATE OF INVEST. 6/08/87 JOB NO.	874	22		HOLE NO. 4
WATER	CONTENT	T		6	SOIL DESCRIPTION			AMPLE	DRILL TYPE
Wp - □	W-O WL	-Δ.	DEPTH	IL SYMBOL	DATUM Geodetic	CONDITION	TYPE	ETRATION	450 & 500 mm Augers
10 20	30 40 50		(M)	S	SURFACE ELEVATION 230.64 m	8		A A	OTHER TESTS
PE	RCENT %		(M) 14 15 16 17 18 19 20 21	S 100 S S S S S S S S S S S S S S S S S	Silt (Glacial Till) -sandy, gravelly -wet -loose to 19.5 m -medium dense below 19.5 m End of hole at 20.4 mSmooth auger refusal -Possible bedrock at 20.4 m -Water inflow from 20.4 m -Water level stabilized at 9.4 m in about 15 minutes	CONDITI	TYPE		

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor JOB NO. 87422 HOLE NO. 5 DATE OF INVEST. LOGGED/DWN. CKD. SDG NCB 6/08/87 DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE 450 & 500 mm Geodetic PENETRATION PESISTANCE DEPTH DATUM Wp - -W-O WL - A. Augers PERCENT % SURFACE ELEVATION 228.72 m (M) OTHER TESTS 20 10 Fill -silty 0 -clay Clay -black See Dilatomete Clay -silty Test Results -brown (DMT 2) -alluvial 2 Clay -mottled brown -highly plastic -3 -stiff to firm -lacustrine 4 qu=53.7kpa#_w=16.18kn/m - 5 pp=112.5kpa Tv=59.4kpa 6 -grey 7 qu=114.2kpa - 8 $\gamma_{W} = 17.38 \text{kn/m}$ pp=122.6kpa Tv=62.7kpa - 9 10 qu=95.3kpa $\gamma_W = 17.78 \text{kn/m}$ - 11 pp=66.1kpa Tv=39.7kpa 12 13 Plate A-7

			PROJECT	IOLE LOG	
DYREC	ROV &	BURG		n Corridor	
OGGED/DWN.	SDG CKD.	NCB	DATE OF INVEST. 6/08/87 JOB NO	87422	HOLE NO. 5
WATER	CONTENT	_ g	SOIL DESCRIPTION	SOIL SAMPLE	DRILL TYPE
Wp - □ V	ν-Ο WL-Δ.	DEPTH N	DATUM Geodetic	CONDITION TYPE FENETRATION RESISTANCE	450 & 500 m Augers
	CENT %	(M) S		CONDITION TYPE TYPE ENETRATION RESISTANCE	
10 20 30	40 50 60	(M) 0		, K. E.	OTHER TESTS
		7-14 V	Clay (cont'd)	⊿ u	qu=118.4kpa
					Y _w =16.51kn/n
		$\pm V$			pp=103.4kpa
		-15			Tv=49.3kpa
	P	J /			
		+ 1			
111,1		16			
B 2/1		∃ "	Silt (Glacial Till)		
PIX 19		7 1	-Sandy		
		17 1	gravelly -clayey		
		1 1	-loose		
			2.000		
61111		H H			
		18			
		-	End of holo at 10.7 -		
		19	End of hole at 18.7 m -Possible bedrock		
		-	-No seepage		
		7			
		-			
		1			
		-			
		7			
		1	B		
		4			
		- 1			
		1			
		-			
		1			
		+			
		1			
		1			
		+			
					PlateA-8

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor HOLE NO. 6 DATE OF INVEST. LOGGED/DWN. CKD. JOB NO. NCB SDG 10/08/87 87422 Hollowstem CONTENT WATER SYMBOL SYMBOL SOIL DESCRIPTION SOIL SAMPLE PENETRATION HESISTANCE 550 & 600 mm DATUM Wp -W-0 WL - A. Geodetic Augers PERCENT % SURFACE ELEVATION 227.47 m (M) OTHER TESTS 50 See dilatomete Clay -silty test results -some sand -alluvial to 15.2 m -stiff to 1.2 m depth (DMT 1) -soft from 1.2 to 3.3 m 2 $v_w = 17.90 \text{kg/m}$ 3 U pp=114.9kpa 4 Sand -little to some silt -trace to some clay MA -fine to medium grained - 5 very dense, 5.2 - 6.4 m -medium grained, grey, saturated -MA - 6 pp=35.9kpa 7 Silt -some sand -some to little clay $v_{\rm w} = 18.00 \, {\rm kg/m}^2$ 8 -firm to stiff pp=67.0kpaTv=31.6kpa w = 17.71 kg/m9 U pp=88.6kpa Tv=15.8kpa 10 $Y_{w} = 14.97 \text{kg}/$ pp=52.7kpa. 11 12 Clay -silty, very stiff, alluvial pp=148.4kpa U Tv=67.0kpa End of hole at 12.5 m Standpipe piezometers SP 1 and 13 SP 2 installed Plate A-9

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor CKD. DATE OF INVEST. LOGGED/DWN. JOB NO. SDG NCB HOLE NO. 10/08/87 87422 DRILL TYPE WATER CONTENT DESCRIPTION SOIL SOIL SAMPLE Hollows tem W-0 DEPTH DATUM Wp -WL-A. Geodetic 550 & 600 mm PERCENT % Augers 227.47 m SURFACE ELEVATION OTHER TESTS 30 40 50 60 10 20 SP 1 Tip at 12.2 m Sand to 11.6 m Bentonite to 10.4 m 230 mm Ø augers SP 2 Tip at 6.1 m Sand at 5.6 m Bentonite to 4.6 m 230 mm Ø augers Pipe ID - 19 mm

Plate A-10

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor LOGGED/DWN. CKD. DATE OF INVEST. JOB NO. SDG NCB 7/08/87 87422 HOLE NO. DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE PENETRATION PESISTANCE 450 & 600 mm DATUM Geodetic Wp - 0 W-O WL-A. DEPTH CONDITION Augers PERCENT % SURFACE ELEVATION 227.13 m (M) OTHER TESTS 20 30 40 50 Topsoil Silt -sandy -some clay 1 -brown -alluvial 2 Sand -some silt -trace clay - 3 MA -saturated 4 Silt -some sand and clay 5 -grey -wet -firm 6 7 -MA U 8 $\chi_{\rm W} = 17.95 \,{\rm kg/m}^3$ Sand -fine grained -grey, saturated pp=61.3kpa Tv=32.6kpa Silt -some sand and clay 9 Clay -grey -highly plastic 10 -firm 100 mm gravel layer, shells qu=67.7kpa $V_{\rm W} = 18.34 \,{\rm kg/m}^3$ U - 11 pp=151.2kpa Tv=69.9kpa 12 13 Plate A-11

YREGROV	& BURGE	PROJECT Kildonan	Corridor		
GED/DWN. SDG	CKD. NCB	DATE OF INVEST. 7/08/87 JOB NO.	87422		HOLE NO. 7
WATER CONTEN		SOIL DESCRIPTION	SOIL S	AMPLE	DRILL TYPE
WP- W-O WL	0	Geodetic Geodetic	CONDITION	PENETRATION RESISTANCE	550 &600 mm Augers
10 20 30 40 50	o 60 (M)	SURFACE ELEVATION 227.13 m	8	F. S.	OTHER TESTS
$H = \frac{1}{2} + $	14	Clay & Classal Till			
1191111	14 12	— — — Clay & Glacial Till			
	111 2				
	15 3				
6 1 1 1 1 1 1	111 8				
	idos	Silt (Glacial Till)			
	16	-wet, loose, clayey			
		End of hole at 16.2 m.			
		-Smooth auger refusal		VI 8	
	17	-Water seepage 20 minutes after			
		completion of drilling			
		-600 mm casing to 10 m depth			
		-Possible bedrock at 16.2 m			
	 				
	1111				
to the first of the first of the first	-1-1-1-1		2010 07 DV 17 T	N	

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor DATE OF INVEST. LOGGED/DWN. CKD. JOB NO. SDG NCB 7/08/87 HOLE NO. 87422 DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE 550 & 600 mm PENETRATION PESISTANCE DATUM Geodetic CONDITION W-0 DEPTH Wp - [WL - A. Augers PERCENT % SURFACE ELEVATION 227.17 m (M) OTHER TESTS 50 20 30 40 Fill -clay, concrete rubble Silt -clayey, brown, stiff -alluvial Sand -fine grained -some silt -brown %_w=18.01kg/m³ 3 saturated U pp=56.2kpa Tv=39.7kpa-5 -grey 6 8 Silt -some sand and clay qu=57.3kpa9 -wet $\chi_{W} = 16.97 \text{kg/m}$ -stiff to firm U pp=183.8kpa Tv=62.2kpa10 -11 -- 50 mm gravel layer 12 qu=49.1kpa $t_{\rm W}$ =15.97kg/m³ U Clay -grey pp=101.5kpa -highly plastic 13 Tv=57.4kpa -stiff to firm Plate A-13

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor LOGGED/DWN. CKD. DATE OF INVEST. JOB NO. SDG NCB 7/08/87 87422 HOLE NO. WATER CONTENT SYMBOL HILABO DRILL TYPE SOIL DESCRIPTION SOIL SAMPLE Geodetic PENETRATION PESISTANCE 550 & 600 mm DATUM Wp -W-0 WL - A. Augers PERCENT % SURFACE ELEVATION 227.17 m (M) OTHER TESTS 20 Clay (cont'd) -14 -- gravelly -15 16 Silt (Glacial Till) -sandy, gravelly -some clay -tan -17 -seepage from 16.5 m End of hole at 17.7 m -18 -Rough auger refusal at 17.7 m -Water level at 7.2 m on completion of drilling -600 mm casing to 4.6 below grade Plate A-14

			PROJECT	IOLE LOG	
DYREC	SROV &	BURG		an Corridor	
.OGGED/DWN.	SDG CKD.	NCB	DATE OF INVEST. 27/08/87 JOB NO	87422	HOLE NO. 12
WATER	CONTENT	70	SOIL DESCRIPTION	SOIL SAMPLE	DRILL TYPE
	V-O WL-A.	DEPTH RAMBOL		CONDITION TYPE PENETRATION FE SISTANCE	Hollow Stem
10 20 30		(M)	SURFACE ELEVATION 226.74 m	CON TENE	OTHER TESTS
		H 0 8	Fill -clay -some gravel		P1
		\exists	Clay -silty		Pneumatic piezometer
		1 1	-brown		tip @ 7.8m
		H	-stiff		sand to 7.1
			-alluvial		bent. to6.1m
		2	-medium to highly plastic		
		T - 1			
		Н			
		3			qu=46.4kpa
				N U	%=18.00kn/m
					pp=97.0kpa Tv=27.8kpa
		1 4 H		- 71 A 11 -	1 V-27.0kpa
			— — —grey		
		5 K	9, 09		
		H In			
					Anna State of
		6		ы	8 _w =17.37kn/m
				/ U	pp=59.8kpa
		HV			
		7 11			
		\Box $ _{\mathcal{X}}$			
		8 1			
		T° I			
		HK			C7 Al
		9 1			qu=67.4kpa
		HV	Clay -mottled brown to grey	ZU I	x _w =19.95kn/m
			-highly plastic		pp=143.6kpa
		10	-lacustrine		pp 1.to.onpu
++++		H V			
		11			
		1			
E/E (5/6)					
		H			
		12			qu=51.2kpa
		H		/U	$\chi_{W} = 17.60 \text{kn/m}$
					pp=87.8kpa
		13	End of hole at 12.8 m.		Tv=58.4kpa
			Install pneumatic piezometer		
			The second of the second of the National Assessment		Plate A-18

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor DATE OF INVEST. 27/08/87 LOGGED/DWN. CKD. JOB NO. HOLE NO. SDG NCB 87422 WATER CONTENT SOIL DRILL TYPE DESCRIPTION SOIL SAMPLE PENETRATION RESISTANCE DEPTH DATUM Geodetic CONDITION Wp -W-0 WL - A. Hollow Stem PERCENT % SURFACE ELEVATION 227.60 m OTHER TESTS 20 30 10 Fill -clay 0 Station --some gravel 3+90.9 Clay -silty -brown -alluvial 2 Clay -mottled brown -highly plastic -stiff to firm 3 -lacustrine 4 5 - 6 qu=56.5kpa $Y_{\rm W}$ =16.77kn/m³ pp=93.8kpa 7 Tv=48.8kpa 8 9 10 11 12 13 Plate A-19

DY	RE	GRO	v	8	BUR	GE	BOREH PROJECT						
							Kirdone						
OGGE	D/DWN.	SDG		CKD.	NCB	_	DATE OF INVEST. 27/08/87 JOB NO	o . 8				HOLE NO.	13
	WATER	R CON	ITENT		DEPTH	100	SOIL DESCRIPTION		SO	IL S	AMPLE		
W		w-0	WL -	Δ.	DEPTH	XW.	DATUM Geodetic		TION		PENETRATION RESISTANCE	Hollow	Ster
	PI	RCENT	*			SOIL			CONDITION	TYPE	SISTA	- A 1.170 H	
10	20	30 40	50	60	(M)	Š	SURFACE ELEVATION 227.60 m		ō		图 第	OTHER	TEST
					14	V	Clay (cont'd)						
				H	\Box			18					
					H	V							
					15								
		+++	++	+	13	/							
	/5 E L									- 1			
			11			/							
					16								
						/							
					17								
				H	- 17	ili	Silt (Glacial Till)	-0-1					
						1	-sandy and gravelly	. (
		1	-			120	-bouldery						
					18	H							
						1							
					- 10		End of hole at 18.6 in glacial	til	1.				
E E					19		Backfill with sand to 14.9. Pla						
++	11						pneumatic piezometer @ 14.9 (P2	2)			1		
							pneumatic piezometer @ 14.9 (P2 Sand to 14.2 m		И				
18					20		Bentonite to 13.1 m			- 1			
				+					1	- 1			
							Set pneumatic piezometer (P3) w	vith		- 1	- 1		
	3 4						tip @ 9.1 m. Sand to 8.5 m. Bentonite to 7.5 m.				- 1		
			110				benconite to 7.5 m.				- 1		
77													
					-								
					X 1								
-											-	Plate	1 2/

DYRE	GRO	v &	В	URI	GE	SS	PROJECT	Kildonan C					
		Leve										-	
OGGED/DWN.	SDG	CKD.	-	NCB		DATE OF I	10/03/0/		874			HOLE NO.	14
WATE	R CONT	ENI			BOL		SOIL DESCRIPTION	ON		IL S	AMPLE	DRILL B-	
Wp -		WL-A.		DEPTH	SYMBOL	DATUM	Geodetic		TION	TYPE	MATION	75 mm	
	ERCENT %	50 60		(M)	SOIL	SURFACE	ELEVATION 223.64		CONDITION	7	PENETRATION	OTHER	
ПП	111			0	-	Water	223.04		+		2 4	OTHER	12313
			+			THE				1			
			+										
			\Box	- 1									
			\pm								100		
			+						W				
				- 2									
			\pm										
			+	2									
			H	- 3							X		
			\pm										
			\pm						П				
			+	- 4					П		- 1		
			\Box										
			\pm	- 5									
			\pm						П				
		+H	\Box										
				- 6									
									11				
		+++	+						П				
		+	H	- 7									
			\Box						П				
			世		1	0	1 6-11-		1	1			
			++	- 8		overbur	den Soils					For DMT see DMT	resu
			+									ace Dill	3
			H		4	Glacial	Till						
			\Box	- 9			-,13052						
			\pm	f	1								
			H	70									
				-10									
			\Box	-	1.1								
		-	+										
		111	H	-11	1								
				-12									
			H	12	1				11	1			
			H										
				-13	4								
			\pm	-	14	3.0×33.44			1		-		
						- Imeston	e Bedrock					Plate	A-21

					PROJECT	E	L	OG	
DYRE	SROV	S. E	SURC	3 E	Kildonan C	Corr	ridor	•	
GGED/DWN.	NCB	CKD.	NCB		DATE OF INVEST. 18/09/87 JOB NO. 8	3742	22		HOLE NO. 14
WATER		Т	-	7		_		MPLE	DRILL TYPE
	W-O WL	-Δ.	DEPTH	IL SYMB	DATUM Geodetic	CONDITION	TYPE	PENETRATION	B-24 75 mm Bit
10 20 30	0 40 50	0 60	(M)	So	SURFACE ELEVATION 223.64 m	8		F F	OTHER TEST
	+HH		14	11	Sound Rock	1-1		-	Rec 100%
			- 1	+	South Nock	П			Nec 100/
			7 1	1		14	-10	_	
			15	1	Sound Rock				Rec 91% RQD -80%
			15		25 mm clay seam at 15.2 m				NUO -0U/
				T					
			1	1					
			16	44	Sound Rock	1-		9	REC94%
			1 1	1	25 mm clay seam at 16.7 m				RQD -75%
			17		22 22.00 22.00 10				.,,,
		$+\Pi$	T '/	T					
			1 h	T					
++++			1	4	Sound Rock				Rec100%
			18	4	No clay seams				RQD - 95%
			1 1	Ш					
HHH			-	1					
			19	11		1			
			1		End hole at 19.1 m. Rock surface estimated at Elev				
					210.38 m.				
			20		Top 150 mm unsound.				
		+	1						
			1						
			1 1						
			1						
			1						
			1						
			1						
			1						
			1						
			1						
			1						
			1						
			1						
		5075						-	Plate A-22

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 24/09/87 LOGGED/DWN. CKD. JOB NO. HOLE NO. 87422 15 DRILL TYPE WATER CONTENT SOIL SAMPLE SOIL DESCRIPTION SYMBOL DEPTH DATUM W-0 WL . A. Wp -PERCENT % m 223.67 m SURFACE ELEVATION OTHER TESTS 50 WATER -1 -2 3 - 4 5 - 6 - 7 8 - 9 -10 ALLUVIAL SOILS GLACIAL TILL - 11 (depth to till extranolated from DMT 6) -12 -13 LIMESTONE BEDROCK PLATE A-23

OG	GED/DI	VN.			C	KD.				DATE OF INVEST. 24/09/87 JOB NO. 8	7/122			HOLE NO. 15
	W	ATER	co	NTE	NT			T	7	SOIL DESCRIPTION	_		AMPLE	10
	_	1	_	٧		۷.	DEP		IL SYMBOL	DATUM	CONDITION	TYPE	PENETRATION	
1	0 2	0 30) 4	0	50	60	m	-	-	SURFACE ELEVATION	8	21	PENE PESS	OTHER TESTS
							\downarrow_1	- 1	4	BROKEN ROCK				
							= 1	1	11	SOUND ROCK	19			RES - 29%
	Ro Mari							f	-	NO RECOVERY	+ :		-	KUD - 60%
					\vdash	\pm	± 1	5	I		17			REC - 99%
					1			h	4	SOUND ROCK				RQD - 60%
					H		$\frac{1}{1}$	F	1	NO RECOVERY		0		
			+	-	Π		1	-	T	SOUND ROCK				REC - 99%
							=	F	7					RQD - 79%
							\downarrow_1	7	+					
						+	=	7	H	SOUND ROCK	78		77	REC - 100%
						\Box		1	İ	5,00,10 10,000			-	RQD - 70%
							1	3		NO RECOVERY				
		+								7,3-1,1207, 2,131				
					H		-	, I	I	BROKEN ROCK	+			
					H		1	T	4		1 1			DEC 040
			\Box		H	\Box	7	1	Н	SOUND ROCK	П			REC - 84%
					H		1 2		I					RQD - 17%
								+	4		H	-	-	
								1	4	SOUND ROCK				REC - 100%
1							- 2	T	T					RQD - 45%
							-	h	T					
-		-	+			H	-	, F	+	DU-TOLG STORY FOR	11	1		
-						\blacksquare	1 2			End hole at 21.7 m. Rock surface estimated at elev.				
		1	1	F	H	H	7			210.53				
										Top 0.9 m unsound rock.				
1														
1							-							
+														
1	+	++			-									
-			\Box			+								
1							-							
1			#			1	=							
1							=							
+		++												

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 25/09/87 CKD. JOB NO. HOLE NO. 16 LOGGED/DWN. 87422 DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE PENETRATION RESISTANCE DEPTH DATUM W-0 WL - A. Wp -PERCENT % SURFACE ELEVATION 223.61 m m 50 OTHER TESTS 20 10 WATER - 1 - 2 - 3 - 4 - 5 - 6 7 - 8 9 FOR TESTS IN ALLUVIAL SOILS ALLUVIUM SEE - 10 DMT 7 GLACIAL TILL 11 -SOFT/LOOSE -PUSHED DRILL RODS TO BEDROCK SURFACE 12 LIMESTONE BEDROCK PLATE A-25

_)YF	REG	GA	0	v	8	В	URI	GE	PROJECT PROJECT		_		.UG		
					_					KILDONAN CORRID						
00	GED/D			=		KD.				DATE OF INVEST. 25/09/87 JOB NO.	_	-			HOLE NO.	16 TYPE
	Wp - (ATER	w-0	_	WL - 4	Δ.	-	DEPTH	SYMBOL	SOIL DESCRIPTION				AMPLE NO NO	DAILE	ITPE
	10		RCENT	* %	50	60		m	=	SURFACE ELEVATION		CONDITION	TYPE	PENETRATION RESISTANCE	OTHER	TECT
T	ĬŢ			ĬI	Ţ	Ĩ	H	Letter 1	F	BROKEN ROCK TO 13.7 m	7			2 4		
ŧ							Ħ	_14	H	3 - 6mm clay seams at 14.0 m					REC -	75%
t							\forall		1						REC -	0.5%
F					Ħ		\forall	- 15	#	SOUND ROCK		Ą				
F						+	\Box		#		-				RQD -	68%
-							\sqcap	_ 16	世							
İ							H		4		1					
-							H		H	—— 225 mm seam or soft rock					REC -	98%
1						-	H	- 17	世							
					\blacksquare		H		+		1					
F					\Box		H	_ 18	T							
F			E 1		+				1	SOUND ROCK					REC -	93%
İ					\Box	-	H	10								
					\Box		H	- 19								
							\Box			NO RECOVERY						
İ							H	- 20		215 VET 27EW						
						1				Abandon hole at 20.1 m			1	-71		
1							\exists			Drill rods jamming						
+				1			\Box									
						+										
		E95. H		-2-			Н									
1		-4.7		-			H									
							\exists		18							
-					H				И			1				
F			\blacksquare		H		\Box									
					Ħ	1	H				1					
i																
												1				
-					1	+										
			\blacksquare	+	H	-										
												1				
															PLATE A	-26

og	GED	/DWN	1.			I	CKD					DATE OF INVEST. 06/10/87 JOB NO	. 8	742	2		HOLE NO.	
		WAT	ER	C	TNC	ENT			1		306	SOIL DESCRIPTION		so	IL S	AMPLE	DRILL	TYPE
	Wp			CENT	· %					EPTH m	SOIL SYMBOL	DATUM		CONDITION	TYPE	PENETRATION RESISTANCE		
	10	20	30	1	40	50	6	0	+	101	S	SURFACE ELEVATION		0	1	K &	OTHER	TESTS
	H	-	H	Ŧ	H				7			WATER						
	Ħ	#		1	H			-	7			WATEN		П				
									1	1				П				
-	++	+	+	+		+	+		+									
	П								F									
				1		+			+	2								
	11			1	-		+		+	1	l A							
			П						7									
			1	+					+	3								
H			1	+	11	+	H		+									
				1		-	П	-	7									
		+					\Box		+	4								
			H	+	-		H		+									
	П		H		П		П	-	7									
							\Box		+	5								
5	1	-	1				H		1									
			1	1			П		1									
									+	6								
		+	1			+	H	+	1									
		2	1	T			H	-	7									
					1				+	7		3						
		+	++	+	1	+	H		1									
	-	+		1			H	-	-									
				1	- 1				1	8								
				-			Н		1									
	-	-		-			H		1									
									1	9								
				+			\vdash		1			ALLUVIAL SOILS						
	1			-	H		H		1	10		NEEDVINE SUIES						
									1	10								
		+		+					1	1	1.1	100 D. 100 D. 100 D. 100 D. 100 D. 100 D. 100 D. 100 D. 100 D. 100 D. 100 D. 100 D. 100 D. 100 D. 100 D. 100 D						
				1			H	+	+	100	N	GLACIAL TILL						
									-	11		(depth extrapolated from DM	1T 1)				
				1				+	1		4							
			H			+	H		1	10	1.							
				T						12	1							
									1	-	1							
								11/1	1		1.1							

DYRE	GRO	V & E	SUR	3 E	BOREHO PROJECT KILDONAN CORRIDO			.UG		
		Lava								
OGGED/DWN.		CKD.			DATE OF INVEST. 06/10/87 JOB NO. 8	_	_	1000	HOLE NO.	
	W-O		DEPTH	SYMBOL	SOIL DESCRIPTION	_	1	PENETRATION TO PENETR	DAILE	1176
	30 40	50 60	m	SOIL	SURFACE ELEVATION	CONDITION	TYPE	ENETR	OTHER	TEST
10 20	1 1							1 -	OTHER	1231
			14	典	LIMESTONE BEDROCK				REC - ROD -	
			15		UNSOUND ROCK					
					NO CORE RECOVERY					
			16	1	100 4104 00 10000					
			17							
			18							
			19							
				-		H		-		
			20		UNSOUND ROCK					
			21		NO CORE RECOVERY	П				
			22			+			-	
				#	UNSOUND ROCK				REC - 3	30%
			23							
			24		End hole at 23.6 m.					
]							
									PLATE A	

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR **DATE OF INVEST.** 07/10/87 JOB NO. 87422 CKD. HOLE NO. LOGGED/DWN. 16B DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE PENETRATION RESISTANCE DEPTH DATUM WP- W-O WL-A. PERCENT % SURFACE ELEVATION 223.69 m m OTHER TESTS 50 20 30 40 MATER -1 . 2 - 3 - 4 -5 - 6 - 7 - 8 - 9 ALLUVIUM -10 GLACIAL TILL - 11 (depth to till extrapolated from DMT 7) -12 - 13 PLATE A-29

oge	GED/D	WN			T	KD.			DATE OF INVEST. 07/10/87 JOB NO.	074	0.0		HOLE NO.	14/42
-		_	P I	CON	TENT		T	L				SAMPLE		100
			w-		WL-	Δ.	DEPTH	SYMBO	DATUM	CONDITION	7	PENETRATION S		
1	0	20	30	40	50	60	m	SOIL	SURFACE ELEVATION 223.69 m	8	-	RESIS	OTHER	TESTS
3.0			+		\vdash		14	777						
				+			14	1	LIMESTONE BEDROCK	n			REC -	100
				35				4	SOUND ROCK				ROD -	
							15	中		+	ΙĒ			
								III	COUND DOCK				REC -	98%
		11		+			-	4	SOUND ROCK				ROD -	83%
ā	1						16							
								7		+		-		
						1 6		M	SOUND ROCK				REC -	96%
		H	\blacksquare				17	T	SUUND ROCK					
							7	竹			1		ROD -	90%
						5, 21,		H						
			+				18	T					222	La se
1							-	1	SOUND BOCK				REC -	94%
1								7	SOUND ROCK				ROD -	73%
-				1 8		++	19	1						
	1					\Box	7	TIT						
								1	NO RECOVERY		91	27		
+							20			-				
1									End hole at 20.0 m					
							=		Drill rods jamming in broken					
1	-	1	1			+	-		rock and clay.					
1			1			H	7							
1							7							
+														
-	-	1					-							
1		H				11								
1						11								
+	+	1	1			++	3							
1	1-1		\Box			11								
1			\Box				7							
+		+	11	-	++	++								
1							7							
1							1							
+				-			-							
1			\square			\blacksquare	7							
1							1							
-			11	+1	++	++	1							
+					U 0.1									

OGGED/DY	VN.		1	CKD.	-	_		DATE OF INVEST. 14/10/87 JOB NO. 8		2		HOLE NO.	160
	ATER	CON					7	SOIL DESCRIPTION	$\overline{}$	_	AMPLE		
	. v		WL-			DEPTH	S	DATUM	CONDITION	TYPE	PENETRATION RESISTANCE		
10 2	0 30	40	50	60		m	SOIL	SURFACE ELEVATION	9		A S	OTHER	TESTS
					\pm			water I					
					\pm			MATER	П				
		+	+	++	+	-1			П				
				H	\exists								
					\Box				11				
					\pm	- 2	h		И		1		
					H	الند							
		L FU L						N					
	8 2					- 3							
					\pm			Y					
		H		H	\exists		Ш		П				
					\Box	- ¢			П				
									П				
1	++		++-		Н	-			П				
				H	\Box	- 5			П				
					口				П				
		1	1		\forall	- 6			11				
				H	H	- 0			H				
		1			\Box		- 1		П				
					\Box	- 7			П				
	++	++		++	\forall	'			П				
					\Box								
						- 8							
	++-												
		1			H								
		1			H	- 9	1		11				
					\exists			ALLUVIUM					
					\forall								
		1			H	- 10							
					\Box								
					\exists			GLACIAL TILL					
					+	- 11		(depth to till extranolated					
					H	1	-	<pre>(depth to till extranolated from DMT 7)</pre>					
							4				9		
	++				\vdash	_ 12							
		H			H	H	A						
							4						
	++	++-			+	- 13	4						
					\Box						- 1	PLATE A	21

DYREGROV & B	UR	36	PROJECT KILDONAN CORRIDOR			.UG	
OGGED/DWN. CKD.	_		DATE OF INVEST. 14/10/87 JOB NO. 8		2		HOLE NO. 160
WATER CONTENT		7		_		AMPLE	
Wp - □ W - ○ W _L - △. PERCENT % 10 20 30 40 50 60	оертн т	SOIL SYMBOL		CONDITION	TYPE	PENETRATION	OTHER TEST:
	77.77	TT		-		-	
	- 14	丑	LIMESTONE BEDROCK SOUND ROCK				REC - 100% RQD - 85%
	-15	1	SOUND ROCK				REC - 92%
		#					RQD - 91%
	-16	H					
	10	典			-		
	-1 7	#	SOUND ROCK				REC - 98%
	17	+					R Q D - 96%
	18	H		+	1		
	-10	#	SOUND ROCK	Н			REC - 100% RQD - 100%
		11	155.528.00	H			KQU - 100%
	19		NO RECOVERY				
				\perp	4		
	-20		BROKEN ROCK, NO RECOVERY				
		TI	NO RECOVERY	Н		-	7.50
	-21	4	SOUND ROCK				REC - 93%
		H					RQD - 73%
	-22	H					
			End hole at 22.3 m.				
	-23	7				/	
	311						
							PLATE A-32

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 15/10/87 JOB NO. CKD. HOLE NO. LOGGED/DWN. 87422 16D DRILL TYPE SOIL DESCRIPTION SOIL SAMPLE WATER CONTENT PENETRATION PESISTANCE CONDITION DATUM DEPTH W-0 WL-A. Wp -PERCENT % m SURFACE ELEVATION OTHER TESTS 50 20 30 40 10 WATER -1 -2 - 3 -4 -5 -6 -7 - 8 9 ALLUVIUM -10 GLACIAL TILL (depth to glacial till 11 extrapolated from DMT 7) - 12 13 LIMESTONE BEDROCK PLATE A-33

DVE	FG	20,	/ 5	BUR	GF	BOREH PROJECT	OLE		LOG	
LOGGED/DV	NY	, 0 ,	CKD.		_	KILDONAN CORRI DATE OF INVEST. 15/10/87 JOB NO		422		HOLE NO. 16D
****	TER C	ONTE			14	SOIL DESCRIPTION			AMPLE	
Wp - [W-(/L-Δ.	DEPTH	S	DATUM	NOTIONO	. 1	PENETRATION	
10 2	30	40	50 60	m	SOIL	SURFACE ELEVATION	8		E E	OTHER TESTS
				14	江北	150 mm clay or soft rock 150 mm clay or soft rock				REC - 69% RQD - 67%
				15		NO RECOVERY				
				16	11	SOUND ROCK				REC - 88%
				17	4	SOUND ROCK				REC - 100% RQD - 93%
				18	世	SOUND ROCK				
						NO RECOVERY				
				19	出	SOUND ROCK				
				20		UNSOUND ROCK				REC - 30% RQD - 10%
				21	THE	SOUND ROCK				REC - 80% RQD - 63%
1					廿十	BROKEN ROCK				
						End hole at 22.5 m.				
										PLATE A-34

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 06/10/87 HOLE NO. 17 JOB NO. LOGGED/DWN. CKD. 87422 DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE PENETRATION RESISTANCE DEPTH DATUM Wp -W-O WL-A. PERCENT % 223.65 m m SURFACE ELEVATION OTHER TESTS 50 20 30 WATER -1 -3 -4 -5 6 7 -8 ALLUVIAL SOILS For tests in -9 alluvium see DMT 7 -10 GLACIAL TILL -11 VERY DENSEM HARD BELOW 11.2 m -12 -13 PLATE A-35

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR CKD. DATE OF INVEST. 06/10/87 LOGGED/DWN. JOB NO. 87422 HOLE NO. 17 DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE PENETRATION DEPTH DATUM Wp- W-O WL-A. PERCENT % m SURFACE ELEVATION OTHER TESTS 50 60 10 20 30 40 GLACIAL TILL -14 LIMESTONE BEDROCK -15 NO RECOVERY 14.3 to 15.5 m REC - 99% SOUND ROCK -16 RQD - 99% REC - 97% -17 SOUND ROCK RQD - 75% -18 REC - 97% SOUND ROCK RQD - 79% -19 SOUND ROCK REC 100% - 20 REC 0% BROKEN ROCK REC - 100% SOUND ROCK RQD - 70% - 21 REC - 93% SOUND ROCK RQD - 30% - 22 - 23 End hole at 22.6 m. PLATE A-36

0	YR	EG	RC	vc	S. E	BURG	36	SS	PROJEC	T	OREHO			JUG		
	D/DWN				CKD.			DATE OF IN	VEST. 21		JOB NO.	874			HOLE NO.	18
	WAT	ER	CON	TENT			7			DESCRIPTION			_	AMPLE		
	10 - 0	W	-O ENT	WL-	Δ.	DEPTH m	50	DATUM SURFACE E				CONDITION	TYPE	PENETRATION		
10	20	30	40	50	60	1 1000	S	SURFACE E	LEVATION	223.00		0		E E	OTHER	TEST
H					H	7						1				
	1							WATE	R							
						1										
-	+	1														
								8								
						1 2										
	+		1			-										
						1		Ç.								
						-3								9		
			H			-	W	4								
						4										
						1										
	++	-				-5										
						7										
						1										
						6						П				
						1 1						П				
+							Ш					П				
			H	H		7						П				
												Н				
	-		++			1										
H						8										
1						1										
			-													
						9										
		615														
						+ 1										
						10						11				
						10										
											-	1				
						11	1	01.45								
						1	All	GLAC	IAL TILI							
						12										
						12	1									
							4					11				
							11	LIMES	STONE BE	DROCK, BR	OKEN TO 13	1m				
						13	1					1			_	
+					-	1	TH	200N	D RUCK,	13.1 - 13	.0 111				PLATE A	-37

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 21/09/87 LOGGED/DWN. CKD. JOB NO. 87422 HOLE NO. 18 DRILL TYPE SOIL DESCRIPTION WATER CONTENT SOIL SAMPLE PENETRATION DEPTH DATUM WP- W-O WL-A. PERCENT % m SURFACE ELEVATION 223.68 m OTHER TESTS 50 60 20 30 NO RECOVERY 13.8 - 13.9 m - 14 REC - 87% SOUND ROCK 25 mm clay seam at 14.6 m RQD - 82% REC - 95% 15 SOUND ROCK RQD - 87% - 16 REC - 95% SOUND ROCK - 17 RQD - 65% - 18 REC - 95% SOUND ROCK RQD - 87% - 19 REC - 95% SOUND ROCK - 20 - 21 SOUND ROCK REC - 93% - 22 End hole at 22.3 m. - 23 PLATE A-38

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 19/09/87 JOB NO. 87422 HOLE NO. 19 CKD. LOGGED/DWN. DRILL TYPE SOIL DESCRIPTION SOIL SAMPLE WATER CONTENT PENETRATION RESISTANCE DEPTH DATUM WL-A. WP- W-O PERCENT % SURFACE ELEVATION 223.62 m OTHER TESTS 50 60 20 30 40 WATER - 1 - 4 - 5 6 7 - 8 9 GLACIAL TILL (depth to glacial till extrapolated from DMT 5) 10 11 12 PLATE A-39

DYREGE	2 VOS	BUR	GE	BOREHO PROJECT		- 1	LOG	
	CKD.	Y		KILDONAN CORRIDO		20		
OGGED/DWN.			Ι.	DATE OF INVEST. 19/09/87 JOB NO.	-	_		DRILL TYPE
wp-□ w-0	Ο W _L -Δ.	DEPTH	SYMBOL	SOIL DESCRIPTION DATUM		_	AMPLE	DAILE TIPE
PERCEN 10 20 30	NT % 40 50 60	m	SOIL	SURFACE ELEVATION	CONDITION	TYPE	PENETRATION RESISTANCE	OTHER TESTS
		1	-	GLACIAL TILL			-	
		14	+	LIMESTONE BEDROCK				REC - 30%
			111	BROKEN ROCK TO 14.6 m				REC - 30%
			IT					
		15	1	SOUND ROCK				REC - 100%
		H	11					300 0 3750
			++					
		16			1			
			H	20.000				-7.1
			1	SOUND ROCK				REC - 96%
		17	111					
			TT			1		RQD - 94%
			1		-		-	
		18	11	SOUND DOO!				
			4	SOUND ROCK				REC - 96%
								DOD 740
		19	11					RQD - 74%
			1					
			11	SOUND ROCK				REC - 97%
		20	M	200-17 Can 1962				NEG - 37/6
			TT					
		21		End hole at 20.7 m.				
			18	Life Hote at 20.7 iff.		MA		
						1 1		
A POTTURE DE								PLATE A-40

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 03/10/87 JOB NO. 87422 LOGGED/DWN. CKD. HOLE NO. DRILL TYPE SOIL SAMPLE WATER CONTENT SOIL DESCRIPTION PENETRATION DEPTH DATUM Wp -W-0 WL- A. PERCENT % SURFACE ELEVATION 223.61 m m OTHER TESTS 50 60 20 WATER -1 ALLUVIAL SOILS - 2 (for test results see DMT 4) - 3 - 4 - 5 - 6 - 7 GLACIAL TILL - 8 (depth to till extrapolated from DMT 4) - 9 -10 - 11 - 12 - 13 LIMESTONE BEDROCK PLATE A-41

DYREG	ROV & E	SUPE	3 F	PROJECT BORE	HOL	E	L	.OG	
-1820	iji liberia			KILDONAN CORRI					
OGGED/DWN.	CKD.			DATE OF INVEST. 03/10/87 JOB N	o. 87	422	2		HOLE NO. 20
WATER	CONTENT		301	SOIL DESCRIPTION		SO	IL S	AMPLE	DRILL TYPE
	O WL-A.	DEPTH	=	DATUM		CONDITION	TYPE	PENETRATION	
10 20 30	40 50 60	m	SOIL	SURFACE ELEVATION 223.61 m		00		A &	OTHER TESTS
		14	1	BROKEN ROCK 13.4 - 14.0 m					DEC CAN
		1 14	4	DR-REA ROOK 15.4 - 14.0 III		W	M		REC - 64%
		7 1	1	SOUND ROCK BELOW 14.0 m		19		1	RQD - 53%
		15	4				_	-	
		1 1	4	SOUND ROCK					REC - 97%
		} }	1	JOONE ROCK					RQD - 81%
		16	11						VAD - 01%
		1 1	4						
		1 1	+		-			- +	
		17	44	SOUND ROCK			l wy		REC - 95%
		11/	4	SOUND KICK					
		1 1	Щ						RQD - 93%
		18							
		10							
				SOUND ROCK	- 1	П			REC - 92%
		19							DOD 60%
		19		100 mm clay seam		1		6 4	RQD - 69%
		1 1							
		1 20	4	SOUND ROCK					REC - 97%
		20	Ц						
									RQD - 73%
			T						
		21	П	Touris Agen					
		1 1	+	SOUND ROCK					REC - 92%
			4						
		22	1						RQD - 79%
			1						
		22		End holo at 22 6 m					
		- 23		End hole at 22.6 m.					
								-	
									PLATE A-42

	DY	RI	EG	R	0	v	8	E	UR	GE	ss	PROJEC		OREHOL	E	L	.OG		
	GGED				1		KD.					VEST 00		CORRIDOR	7.0.0			Lucisno	
-01	_		_	-	NIT		,,,,,,			Ι.	DATE OF IN		/09/87	JOB NO. 87	7			HOLE NO.	
Ė	_	_	ER					_	DEPTH	BOL		SOIL	DESCRIPTIO	N		IL S	AMPLE	DAILE	11.2
	Wp	-0				WL-4	Δ.		DEPTH	SYA	DATUM				CONDITION	TYPE	PENETRATION PESISTANCE		
	10	20	PERO 30	CENT	0	50	60		m	SOIL	SURFACE EL	EVATION	223.63 m		CONC	7	ENETI	OTHER	TEST
I					Ĭ	Ï	Ï	T									-		1,50
+	+		H	+	+		+	-			WATER	,			Ш				
-			H					+			1121121								
İ									-1						П				
-			++												1				
F	\blacksquare		H	H		+	+				ALLIN	AIL SO	TIC		П				
1		#							- 2		The second secon		t results s	00 DMT 41	11				
+	+	\pm									(1)	or ces	c results s	ee Dill 4)					
-				H				-											
1							1		- 3										
+																	113		
F	+					+													
F	H	1 8			1		-		- 4										
1							1			M									
1							+												
	\Box	UE	H	\Box			-	+	- 5						П				
İ															П				
1	++			+			+	+											
1			H			H	-	\vdash	- 6										
1																			
+	++	+		+			+	\pm	7							М			
+	+			++	-		-	+	- /										
T					1					1.1									
1				+	\pm				– 8	111	GLACI	AL TILL							
-				+1		+	-		O	N.	(d	enth to	till extr	apolated					
I	H							H		4	f	rom DM7	T 4)						
1									- 9										
	+	+		+		+	+	+	9										
				\Box		H	-			411									
									- 10	-									
-									10	. 1									
		-		11	-	+	-	+	00	11									
						H			- 11	1							1		
-						\vdash	+	+	11	I.A						1			
	H			H				H											
-				\Box	8				- 12	-									
	+			+			1	\perp	17	1									
F	H	1		H	-	H	+	+		1									
-				\Box		\Box	1	\Box	— 13	1									
1	++	-		++	-		1			H	1 TMES	TONE BE	DBUCK					PLATE A	- 1

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 28/09/87 JOB NO. 87422 HOLE NO. 21 LOGGED/DWN. CKD. DRILL TYPE SOIL DESCRIPTION SOIL SAMPLE WATER CONTENT PENETRATION DEPTH WP- W-O WL-A. DATUM PERCENT % SURFACE ELEVATION OTHER TESTS 10 20 30 40 50 60 NO RECOVERY TO 14.2 m - 14 SOUND ROCK, 14.2 - 14.8 m - 15 REC - 99% --- 25 mm clay seam RQD - 44% SOUND ROCK - 16 SOUND ROCK REC - 97% - 17 RQD - 81% - 18 --6 mm clay seams (2) REC - 95% -- 12 mm clay seam RQD - 45% SOUND ROCK - 19 REC - 98% SOUND ROCK 20 RQD - 67% 21 SOUND ROCK REC - 100% RQD - 36% - 22 End hole at 22.4 m. - 23

PLATE A-44

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR HOLE NO. 22 DATE OF INVEST. JOB NO. 87422 CKD. LOGGED/DWN. 23/09/87 DRILL TYPE SOIL DESCRIPTION SOIL SAMPLE WATER CONTENT PENETRATION RESISTANCE DATUM DEPTH Wp-□ W-O WL-A. PERCENT % 223.68 m m SURFACE ELEVATION OTHER TESTS 50 30 10 20 MATER - 1 2 ALLUVIAL SOILS (for testing see DMT 3) - 3 - 4 - 5 6 - 7 - 8 GLACIAL TILL (depth to glacial till extranolated from DMT 3) 9 - 10 - 11 - 12 13 LIMESTONE BEDROCK PLATE A-45

DYRE	GROV	& E	SURG	36	BOREHO PROJECT	LE		.OG	
					KILDONAN CORRIDO	_			
OGGED/DWN.	1	CKD.			DATE OF INVEST. 23/09/87 JOB NO.	_	_		HOLE NO. 22
WATER	CONTEN	Т		BOL	SOIL DESCRIPTION		IL S	AMPLE	DRILL TYPE
	W-O WL	-Δ.	DEPTH	IL S	DATUM	CONDITION	TYPE	PENETRATION RESISTANCE	
10 20 3	30 40 50	60	m	Sc	SURFACE ELEVATION 223.68 m	ő		£ £	no RFC
			14	TÌ	BROKEN ROCK, 13.0-13.8 m	+			REC - 99%
			14	I	SOUND ROCK				RQD - 45%
			-		SOUND ROCK				REC - 99%
		3256	15	7				o v	RQD - 83%
			1	11					
			-	4					
			16	11		-			
5 2 1					SOUND ROCK				DEC OC
				11	333113 11.7311				REC - 96%
		+	17	T					RQD - 73%
			7	1		10			
				Ti	COUNT DOOR				
			18	+	SOUND ROCK			100	REC - 93%
				1					RQD - 66%
				II					1140 - 00%
			19	1					
					End hole at 19.0 m.				
			7 1						
				М					
			1						
			1 1						
			1						
			1						
		112							
			1						
			1						
			1						
			1 1	18					
			1						
		1 1 5	1						
			1						
			1						
								3	
									PLATE A-46

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR HOLE NO. 23 DATE OF INVEST. 22/09/87 JOB NO. 87422 CKD. LOGGED/DWN. DRILL TYPE SOIL SAMPLE DEPTH SAMBOR SOIL DESCRIPTION WATER CONTENT PENETRATION PESISTANCE DATUM WP- W-O WL-A. PERCENT % M SURFACE ELEVATION 223.70 m OTHER TESTS 50 WATER 1 ALLUVIAL SOILS - 2 (For testing see DMT 3) - 3 - 4 - 5 6 - 7 - 8 GLACIAL TILL (Depth to till extrapolated 9 from DMT 3) - 10 11 12 13 LIMESTONE BEDROCK PLATE A-47

BOREHOLE LOG PROJECT KILDONAN CORRIDOR

DYREGROV & BURGESS

LOGGED/DW	N.	CKD.			DATE OF INVEST. 22/09/87 JOB N	o. 87422			HOLE NO. 23
WA	TER CON	TENT		7	SOIL DESCRIPTION			AMPLE	DRILL TYPE
	W-O PERCENT	*	DEPTH	SOIL SYMBOL	DATUM	CONDITION	TYPE	PENETRATION RESISTANCE	
10 20	30 40	50 60		S	SURFACE ELEVATION 223.70 m	- 0		K &	OTHER TESTS
			1 14	T	SOUND ROCK				REC 87%
			14	4		111			RQD 83%
			1	11			ha!	11	17064 365
			1	7				-	
			15	11	SOUND ROCK				REC 97%
	++++	++++	1	4					RQD - /0%
				1		13111	111		
			16	#			1		
			1	1			-		
			1	1	SOUND ROCK				REC 100%
			17	4					
			1/						RQD - 88%
			1	11					
			10	4			-		
			18	1	SOUND ROCK				REC 95%
		5 5 5 5		IT			3		RQD - 47%
		++++	19	Atr					
				Ш		1	_		
			1		SOUND ROCK				222 223
	1136		20	1		- 11		- 11	REC 97%
			- 20	III		4.1			RQD - 61%
	0.8 24-1						- 1		
+++			1	II				_	
			21		End hole at 20.9 m.				
					Elia Hore at Evis III.	1.1			
				819		- 11			
			1	18					
				1					
1									
$\Box\Box$									
			1						
	19 6 5 6		1						
			1						
HH			1						
			1					-	27.75.75.F.27.5
-			1						PLATE A-48

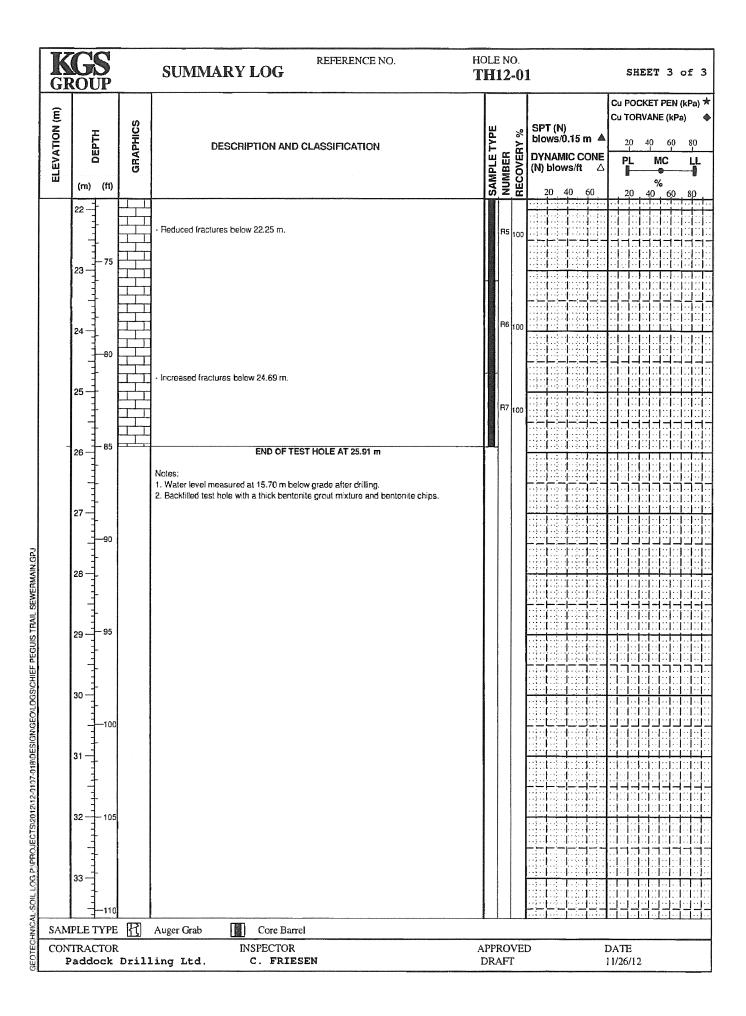
BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR HOLE NO. DMT 3 DATE OF INVEST. 22/09/87 JOB NO. 8/422 LOGGED/DWN. CKD. DRILL TYPE CONTENT SOIL DESCRIPTION SOIL SAMPLE WATER PENETRATION RESISTANCE DEPTH DATUM Wp -W-0 WL-A. PERCENT % SURFACE ELEVATION 223.70 m OTHER TESTS 30 20 10 MATER 1 UNDRAINED 2 SHEAR SILT - clavey STRENGTH (kPa) 10.3 3 CLAY - silty - 11.3 12.1 13.1 4 13.9 14.8 15.8 5 16.6 15.8 26.9 20.7 6 19.8 STRATIFIED SILTY CLAY AND 31.2 CLAYEY SILT - 27.9 7 34.5 38.6 8 End Dilatometer testing at 7.9 m. Refusal on glacial till or boulder at 7.9 m. PLATE A-49

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 30/09/87 HOLE NO. DMT 4 CKD. JOB NO. 87422 LOGGED/DWN. DRILL TYPE DEPTH HTGEO SOIL DESCRIPTION WATER CONTENT SOIL SAMPLE PENETRATION DATUM Wp -W-O WL-A. PERCENT % SURFACE ELEVATION 223.61 OTHER TESTS 50 60 m UNDRAINED WATER SHEAR - 1 STRENGTH (kPa) - 2 CLAYEY SILT 28 27 27 - 3 36 STRATIFIED SILT, SAND, AND CLAY 4 45 39 5 SILTY SAND ø=34⁰ ø=36⁰ 6 7 51 SILTY CLAY 59 58 End dilatometer test at 7.5 m. 8 Refusal on boulder or glacial till. PLATE A-50

									PROJEC		OREHOL	E	L	.OG		
DY	RE	EGF	10/	/ 8	. 8	UR	3 E	SS	7.1.0020		AN CORRIDO	R				
OGGE	D/DWN.			CKD				DATE OF IN	VEST. 30,	09/87	JOB NO. 8	7422	2		HOLE NO.	
	WAT	ER C	ONTE	NT			10		SOIL	DESCRIPTIO	N	so	IL S	AMPLE		
W		W-O		L-Δ.		DEPTH	IL SYMBOL	DATUM				CONDITION	TYPE	PENETRATION		
10	20	30	40	50 6	0	m	SOIL	SURFACE E	LEVATION	223.61		8	13	PES PEN	OTHER	TESTS
+								LIATE	,				Ξ			
								WATER	(
H					-	- 1										
					9	- 2								N S		
					15											
						- 3										
						3										
-							W					11		8		
-	H					- 4		ŠI.								
					20								11			
			+			- 20		l.								
						- 5										
-			++-													
	H						118									
						- 6										
	\vdash											Ш			UNDRAI	NED
															SHEAR	
						- 7									STRENG	TU
				++1												11)
							V	CLAVE	V CILT	CILTY CL	AND.		1	1	(kPa)	
						- 8	1	SAND	1 21LI	SILTY CLA	AT AND				- 24 - 34	
							1	SAND							$- \phi = 3$	90
								End	lilatom	ton tosti	ng a+ 0 E .				, ,	
		31				- 9		Refus	al on c	ter testir	19 01 0.5 1	1				
									3,11	70,0						
+																
-																
+					-											
+																
1														1		
-															PLATE A	1-51

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 30/09/87 JOB NO. 87422 HOLE NO. DMT 6 LOGGED/DWN. CKD. DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE PENETRATION RESISTANCE DATUM DEPTH W-O WL-A. Wp -PERCENT % SURFACE ELEVATION 223.61 OTHER TESTS m 10 20 WATER 1 - 2 - 3 - 4 5 - 6 - 7 8 -9 -10 ALLUVIAL SOILS Drill rod nushed from 10.0 to - 11 10.6 m. Refusal on glacial till or boulder at 10.6 m. - 12 PLATE A-52

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR JOB NO. 87422 HOLE NO. DMT 7 CKD. DATE OF INVEST. 30/09/87 LOGGED/DWN. DRILL TYPE DESCRIPTION SOIL SAMPLE SOIL WATER CONTENT PENETRATION RESISTANCE DATUM DEPTH W-0 WL - A. Wp -PERCENT % m SURFACE ELEVATION OTHER TESTS 50 60 20 30 40 MATER 1 2 - 3 4 5 6 7 8 - 9 10 GLACIAL TILL - soft/loose 11 - Drill rods pushed with no rotation from 10.4 to 13.1 m. Refusal on probable bedrock at 13.1 m. - 12 13 PLATE A-53

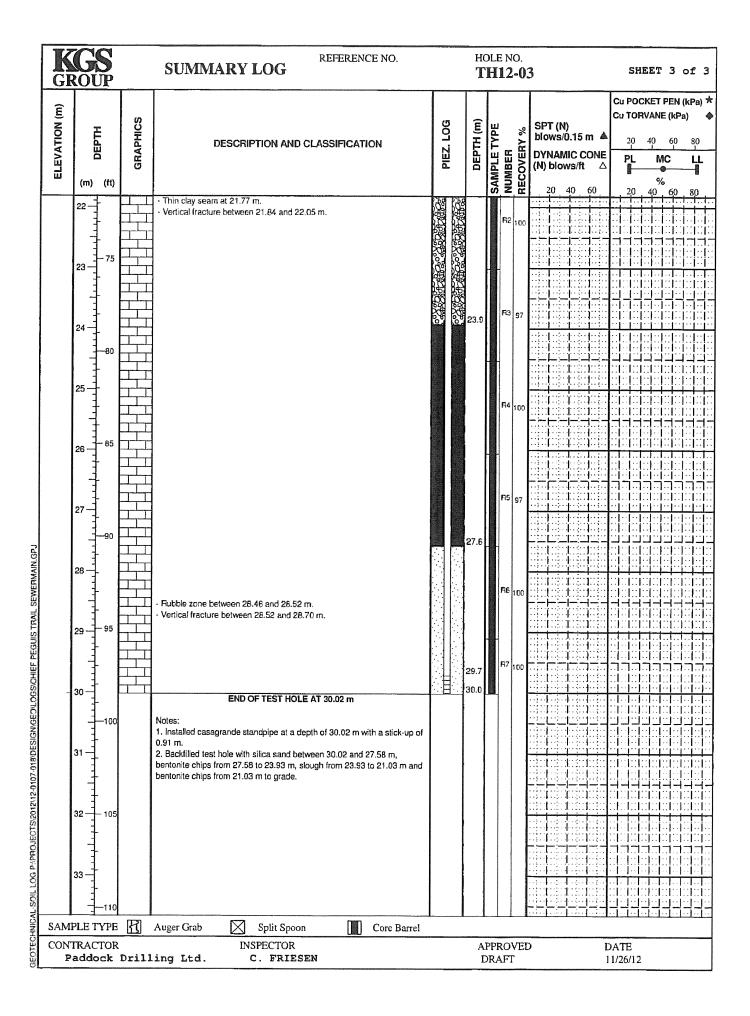

HOLE NO. REFERENCE NO. SUMMARY LOG SHEET 1 of 3 TH12-02 CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT JOB NO. 12-0107-018 CLIENT GROUND ELEV. 228.37 PROJECT Chief Peguis Bridge Sewer Replacement TOP OF PVC ELEV. SITE East of Red River and South of Chief Peguis Trail WATER ELEV. DATE DRILLED LOCATION South of Existing Sewermain on the Upper Bank 11/8/2012 UTM (m) N 5,534,757 Acker Track Drill Rig, 125 mm ø Solid Stem and HQ Core Barrel E 636,604 METHOD Cu POCKET PEN (kPa) * Ê Cu TORVANE (kPa) GRAPHICS SPT (N) ELEVATION PIEZ. LOG SAMPLE TYPE % DEPTH blows/0.15 m A DEPTH (RECOVERY DESCRIPTION AND CLASSIFICATION NUMBER DYNAMIC CONE MC (N) blows/ft % (m) (ft) 40 20 60 20 40 60 80 SILTY CLAY FILL - Brown, moist, stiff, intermediate to high plasticity, some medium to coarse grained sand, some fine grained gravel, trace H S1 coarse grained gravel, trace rootlets, SILTY CLAY - Brown, moist, stiff, high plasticity, trace fine to medium grained sand. - 5 Increased sand content below 1.83 m. 2 SAND - Brown, moist, compact, fine to medium grained, trace coarse 昪 52 grained sand, trace silt, trace clay. SILTY SAND - Brown, moist, loose, fine to medium grained, with silt, trace clay. F 53 SOIL LOG P:/PROJECTS/2012/12-0107-018/DES/GM/GEO/LOGS/CHIEF PEGUIS TRAIL SEWERMAIN.GPJ SAND - Brown, moist, compact, fine to medium grained, trace silt. 5 Water noticed on sample at - 5.49 m. SANDY SILT - Brown, moist, firm, intermediate to high plasticity, trace oxidation. -20 SILTY SAND - Brown, moist, soft, fine to medium grained, trace # oxidation. \$5 Grey, no oxidation below 6.71 m. SAND - Grey, moist, compact, medium grained, some fine and coarse grained sand. SILTY CLAY - Grey, moist, firm, high plasticity. Medium grained sand layer between 7.39 and 7.47 m. 25 8 SILTY SAND - Grey, moist, soft, fine to medium grained sand, with silt. \$ SE Organic layer between 8.53 and 8.64 m. 9 SILTY CLAY - Grey, moist, firm, high plasticity, trace line grained sand. 30 Increased sand between 9.75 and 9.96 m. Core Barrel SAMPLE TYPE X Auger Grab Split Spoon INSPECTOR APPROVED DATE CONTRACTOR Paddock Drilling Ltd. C. FRIESEN DRAFT 11/26/12

K	GS ROUP		SUMMARY LOG REFERENCE NO.			ole N H12		2				SHE	ET	2 0	f 3
ELEVATION (m)	ОЕРТН	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	TYPE	٨٤%	SP		.15 m 4	Cu	TOR	/ANE	(kPa)	Pa) ★ ◆
ELEVA	(m) (ft)	GRA		PIEZ	DEP	SAMPLE TYPE	RECOVER	DY (N)	NAMI blow: 20 4			PL 20	MC % 40 .	60	LL 80
	35		- Increased sand between 10.36 and 10.52 m.			13									
	11		SILTY SAND - Grey, moist, compact, medium grained, trace fine grained sand, trace clay. - Test hole squeezing at 10.67 m.			F] Se									
	12-1-40					21									
	13—		- 25 mm thick organic layer at 12.50 m. - Decreased sand between 12.95 and 13.26 m.												
						F] 59									
	14		<u>SILTY CLAY</u> - Grey, moist, firm, high plasticity, trace coarse grained sand, trace fine grained gravel, trace silt nodules.												
	15—		- Grain Size Distribution: Gravel (1.0%), Sand (8.8%), Silt (21.9%), Clay (57.0%) at 14.63 m.			#\$10)						1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
-	16 — 1		SILT TILL - Tan, moist, compact, with medium to coarse grained sand,			F]si									
Pate correct			some fine grained gravel, trace coarse grained gravel Loose, decreased gravel below 16.46 m.				100	1.2 1.4 1.4							
That a moreover	1 1 1 1 1 1 1								 						
SAM CON P	18		- Auger refusal at 18.34 m on bedrock. Switched over to core below 18.34 m.]]si									
	19-1		<u>LIMESTONE BEDROÇK</u> - White, competent, vertical and horizontal fractures.			R1	98							 -	
	20 —														
	21 —					R2	98					1.1:			
	70	וכח													
CON	PLE TYPE TRACTOR addock		Auger Grab Split Spoon Core Barrel INSPECTOR ing Ltd. C. FRIESEN			PPRC ORAF		D			DA7				

GR	ROUP		SUMMARY LOG REFERENCE NO.	1	HO T	H12-02	2	SHEET 3 of 3
ELEVATION (m)	F	soll		90	Œ	PE %	SPT (N) blows/0.15 m 🔺	Cu TORVANE (kPa)
VATI	ОЕРТН	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	ER ER ÆRY	DYNAMIC CONE	PL MC LL
ELE	(m) (ft)	Ō		G.		SAMPLE TYPE NUMBER RECOVERY %	(N) blows/ft △	% 20 40 60 80
	22 — 75 23 — 75 23 — 80 25 — 85 26 — 85 27 — 90 - 90 - 91 - 90 - 91 - 90 - 91 - 90 - 91 -	- Increased fractures below 22.94 m Vertical fracture between 23.01 and 23.67 m. END OF TEST HOLE AT 26.06 m Notes: 1. Installed casagrande standpipe at a depth of 26.06 m with a stick-up of 0.84 m. 2. Backfilled test hole with silica sand between 26.06 and 22.17 m and bentonite chips from 22.17 m to grade.		25.8 26.1	R3 98			
	31 - 105							
	110	יכח			<u> </u>			
SAM	PLE TYPE	图	Auger Grab Split Spoon Core Barrel INSPECTOR			APPROVE		DATE

	K GR	GS ROUP		SUMMARY LOG REFERENCE NO.	HOLE NO. TH12-0	1	SHEET 1 of 3
		JECT	Chief F	OF WINNIPEG - WATER AND WASTE DEPARTMENT Peguis Bridge Sewer Replacement	an an an an an an an an an an an an an a	JOB NO. GROUND ELEV. TOP OF PVC ELI	12-0107-018 226. 37
	SITE			Red River and South of Chief Peguis Trail of Existing Sewermain on the Lower Bank		WATER ELEV. DATE DRILLED	11/7/2012
		LING				UTM (m)	N 5,534,788
		HOD	ACKET I	rack Drill Rig, 125 mm ø Solid Stem and HQ Core Barrel		The state of the s	E 636,543
	ELEVATION (m)	a) DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	SAMPLE TYPE NUMBER RECOVERY %	SPT (N) blows/0.15 m DYNAMIC CONE (N) blows/ft	Cu POCKET PEN (kPa) * Cu TORVANE (kPa) 20 40 60 80 PL MC LL %
		1 (111)	' 	SILTY CLAY - Brown, damp, firm, intermediate plasticity, trace roollets, trace fine	3 2 2	20 40 60	20 40 60 80
		1 1 1 1 1 1 1 5		grained sand, trace fine grained gravet.	\$1		
		2 - 1		SAND & GRAVEL - Light grey, moist, dense, medium to coarse grained sand, fine to coarse grained gravel, some clay Hole squeezing at 1.83 m.	\$52		
EWERMAIN.GPJ		4		SAND - Brown, moist to wet, loose, line to medium grained, trace oxidation. - Water noticed on sample below 4.57 m.	\$ s3		•
SICHIEF PEGUIS TRAIL S		5 20		- Grey, no oxidation below 5.33 m.	5 4		
% 100	1	-}		SILTY CLAY - Grey, moist, firm, high plasticity.	\$5		
GEOTECHNICAL-SOIL LOG PYPROJECTS/2012/12/0107/018/DESIGNIGEO/LOGS/CHIEF PEGUIS TRAIL SEWERMAIN.GPJ		7		SAND - Grey, moist, loose, medium grained, trace coarse grained sand. - Some to with silt, reduced sand below 7.92 m.	\$6		
VICAL-SOIL LOG PAPROJE	SAM	9		SILTY CLAY - Grey, moist, firm, high plasticity, trace silt nodules, trace medium grained sand, trace fine grained gravel. Auger Grab Core Barrel			
OTECH	CON	TRACTO	R	INSPECTOR Ling Ltd. C. FRIESEN	APPROVE DRAFT		DATE 11/26/12
빙		eadock	. velli	LING DUG. C. ERIESEN	DRAFI		11/20/12

DESCRIPTION AND CLASSIFICATION - Stiff below 10.06 m. - Grain Size Distribution: Gravel (1.2%), Sand (11.7%), Sit (30.5% 11.56 m. - Firm below 12.95 m Grain Size Distribution: Gravel (0.8%), Sand (10.2%), Sit (23.7% 13.11 m. - SILTY TILL - Tan, moist, compact, with medium to coarse grained gravel, trace coarse grained gravel. - Loose, reduced coarse grained sand, reduced fine to coarse grained gravel, trace coarse grained sand, reduced fine to coarse grained gravel. - Loose, reduced coarse grained sand, reduced fine to coarse grained gravel. - Loose, reduced coarse grained sand, reduced fine to coarse grained gravel. - Loose, reduced coarse grained sand, reduced fine to coarse grained gravel, trace coarse grained gravel. - Loose, reduced coarse grained sand, reduced fine to coarse grained gravel, trace coarse grained gravel.	
- Stiff below 10.06 m. - Fieduced fine grained gravel below 10.67 m. - Grain Size Distribution: Gravel (1.2%), Sand (11.7%), Silt (30.5% 11.58 m. - Reduced silt nodules below 12.50 m Firm below 12.95 m Grain Size Distribution: Gravel (0.8%), Sand (10.2%), Silt (23.7% 13.11 m. - Silty Tilt - Tan, moist, compact, with medium to coarse grained gravel, trace coarse grained gravel Loose, reduced coarse grained sand, reduced fine to coarse grained m. - Auger refusal at 16.76 m on bedrock. Switched over to core below.	%), Clay (56.6%) at
- Fieduced fine grained gravel below 10.67 m. - Grain Size Distribution: Gravel (1.2%), Sand (11.7%), Silt (30.5%) 11.58 m. - Reduced silt nodules below 12.50 m Firm below 12.95 m Grain Size Distribution: Gravel (0.8%), Sand (10.2%), Silt (23.7%) 13.11 m. - SILTY TILL - Tan, moist, compact, with medium to coarse grained gravel, trace coarse grained gravel Loose, reduced coarse grained sand, reduced fine to coarse grained m.	%), Clay (56.6%) at
- Heduced tine grained gravel below 10.67 m. - Grain Size Distribution: Gravel (1.2%), Sand (11.7%), Silt (30.5%) 11.58 m. - Reduced silt nodules below 12.50 m Firm below 12.95 m Grain Size Distribution: Gravel (0.8%), Sand (10.2%), Silt (23.7%) 13.11 m. - SILTY TILL - Tan, moist, compact, with medium to coarse grained gravel, trace coarse grained gravel Loose, reduced coarse grained sand, reduced fine to coarse gramm. - Auger refusal at 16.76 m on bedrock. Switched over to core below.	
11.58 m. Reduced silt nodules below 12.50 m. Firm below 12.95 m. Grain Size Distribution: Gravel (0.8%), Sand (10.2%), Silt (23.7%) 13.11 m. SILTY TILL - Tan, moist, compact, with medium to coarse grained gravel, trace coarse grained gravel. Loose, reduced coarse grained sand, reduced fine to coarse gramm. Auger refusal at 16.76 m on bedrock. Switched over to core below.	
- Reduced silt nodules below 12.50 m Firm below 12.95 m Grain Size Distribution: Gravel (0.8%), Sand (10.2%), Silt (23.7%) 13.11 m. Silty Tilt - Tan, moist, compact, with medium to coarse grained gravel, trace coarse grained gravel Loose, reduced coarse grained sand, reduced fine to coarse gramm. Auger refusal at 16.76 m on bedrock. Switched over to core below.	V) Clau(SE 28/) a) Pro-
- Grain Size Distribution: Gravel (0.8%), Sand (10.2%), Silt (23.7% 13.11 m. SILTY TILL - Tan, moist, compact, with medium to coarse grained gravel, trace coarse grained gravel. - Loose, reduced coarse grained sand, reduced fine to coarse gramm. - So - Auger refusal at 16.76 m on bedrock. Switched over to core below.	V) Clay (55.38/1.5)
SILTY TILL - Tan, moist, compact, with medium to coarse grained gravel, trace coarse grained gravel. - Loose, reduced coarse grained sand, reduced fine to coarse gram. - 50 - Auger refusal at 16.76 m on bedrock. Switched over to core below.	%), Clay (65.3%) at
15—50 m. 16—55 Auger refusal at 16.76 m on bedrock. Switched over to core beld	d sand, some fine
- 55 - Auger refusal at 16.76 m on bedrock. Switched over to core belo	ained gravel below 14.63
Auger refusal at 16.76 m on bedrock. Switched over to core being	
LIMESTONE BEDROCK - White, fractured with vertical and horiz	ow 16.76 m.
	contal fractures. Fil 85
18	R2 98
19 -	
- 65 - Clay seam at 19.69 m.	R3 100
Clay between 20.12 and 20.19 m.	F4 100
21 70 Yelkow fractured limestone between 21.41 and 22.25 m.	
SAMPLE TYPE Auger Grab Core Barrel	



	K GF	CSROUP		SUMMARY LOG REFERENCE NO.			DLE NO. H12-0	2B	SHEET 1 of 2
4	PRO		Chief I	OF WINNIPEG - WATER AND WASTE DEPARTMEN Peguis Bridge Sewer Replacement	IT	Tables of the latest of the la		JOB NO. GROUND ELEV. TOP OF PVC ELI	12-0107-018
								WATER ELEV.	
			~3 m W	est of TH12-02				DATE DRILLED UTM (m)	11/9/2012 N
		LLING THOD	Acker T	rack Drill Rig, 125 mm ø Solid Stem				O HVI (III)	E
	ELEVATION (m)	(#) DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER RECOVERY %	SPT (N) blows/0.15 m A DYNAMIC CONE (N) blows/ft \triangle 20 40 60	Cu POCKET PEN (kPa) * Cu TORVANE (kPa) * 20 40 60 80 PL MC LL % 20 40 60 80
Γ		1		SILTY CLAY FILL - Brown, moist, stiff, intermediate to high plasticity, some medium to coarse grained sand, some fine grained gravel, trace					
	_	1		coarse grained gravel, trace rootlets.					
		1.3	1//	SILTY CLAY - Brown, moist, stiff, high plasticity, trace fine to medium grained sand.					
-			1//						
		-5							
-		2		- Increased sand content below 1.83 m.					
		3	121.12	SAND - Brown, moist, compact, fine to medium grained, trace coarse grained sand, trace sift, trace clay.					
				granica saria, nace sin, nace day.					
	_	3-10	7777	CHTY CAND. D					
		- - - -		SILTY SAND - Brown, moist, loose, fine to medium grained, with silt, trace clay.					
l		-							
2gG	-	4-}		SAND - Brown, moist, compact, fine to medium grained, trace sitt.					
GUIS TRAIL SEWERMAIN.GPJ		+							
WER		15							
AIL SE		5-							
IIS TR		1							
PEG	1	1		Water noticed on sample at ~ 5.49 m. SANDY SILT - Brown, moist, firm, intermediate to high plasticity, trace					aaaaaaaaaa alalalalalalalala
품		6-1-20		oxidation.					
OGS	1	#		SILTY SAND - Brown, moist, soft, fine to medium grained, trace oxidation.					
GEO	-	}		ղ- Grey, no oxidation below 6.71 m.					
SIGN	-	7	ועו	SAND - Grey, moist, compact, medium grained, some fine and coarse grained sand.					
18/06		1		SILTY CLAY - Grey, moist, firm, high plasticity. - Medium grained sand layer between 7.39 and 7.47 m.		1			
0107-(1-25							50 50 50 60 60 60 60 60
12/12	l	8-1		SILTY SAND - Grey, moist, soft, fine to medium grained sand, with silt.					
TS/20		1		- Organic layer between 8.53 and 8.64 m.		1			
OVEC	J	, ‡		Organiologici Delitecti 0.00 and 0.04 III.		1			
P/P		9 - 30		SILTY CLAY - Grey, moist, firm, high plasticity, trace fine grained sand.					
100		+							
AL-50			$\mathbb{Z}\mathbb{Z}$	- Increased sand between 9.75 and 9.96 m.					
HNIC	SAM	PLE TYPE	3						
GEOTECHNICAL-SOIL LOS PAPROJECTS/2012/12-0107-018/DESIGN/GEOULOGS/CHIEF PE		TRACTOR addock		INSPECTOR .ing Ltd. C. FRIESEN			PPROVE RAFT		DATE 1/26/12

Ê Z	l g		5	(E	ļ 		SPT (N	١.		8		ET PE	
ELEVATION (m)	DEPTH	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER	COVERT %	blows/(DYNAM (N) blov	Ó.15 í IIC C	ONE	-	20 4 PL	40 6 MC	 80 L
11 —	-35 -40	- Increased sand between 10.36 and 10.52 m. SILTY SAND - Grey, moist, compact, medium grained, trace fine grained sand, trace clay. - Test hole squeezing at 10.67 m.	PN	11.4			20	40 	60		20	1 - 1 - 1	80
-14- -15-	-45 50	25 mm thick organic layer at 12.50 m. Decreased sand between 12.95 and 13.26 m. SILTY CLAY - Grey, moist, firm, high plasticity, trace ccarse grained sand, trace fine grained gravel, trace silt nodules.											
17-	- - - - - - - - - - -	SILT TILL - Tan, moist, compact, with medium to coarse grained sand, some fine grained gravel, trace coarse grained gravel Loose, decreased gravel below 16.46 m.		17.4 17.7 18.3									
20 —		AUGER REFUSAL AT 18.34 m Notes: 1. Stratigraphy assumed from TH12-02 drilled ~3 m away. 2. Installed casagrande standpipe at a depth of 17.68 m with a stick-up of 0.91 m. 3. Installed PN 034983 at a depth of 11.58 m. below grade. 4. Backfilled test hole with silica sand between 17.68 and 16.76 m and bentonite chips from 16.76 m to grade.											

	K	GS ROUP		SUMMARY LOG REFERENCE NO.			DLE NO. H12-0	3	SHEET 1 of 3
	CLII PRO SITI	JECT	Chief F	OF WINNIPEG - WATER AND WASTE DEPARTME Peguis Bridge Sewer Replacement If Red River and South of Chief Peguis Trail	NT			TOP OF PVC ELE	12-0107-018 230-84 EV.
				f Existing Sewermain on the Upper Bank				WATER ELEV. DATE DRILLED	11/13/2012
	DRII			ack Drill Rig, 125 mm ø Solid Stem and HQ Core Barre	1			UTM (m)	N 5,534,926 E 636,265
	ELEVATION (m)	(#) DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER RECOVERY %	SPT (N) blows/0.15 m ▲ DYNAMIC CONE (N) blows/ft △ 20 40 60	Cu POCKET PEN (kPa) * Cu TORVANE (kPa) 20 40 60 80 PL MC LL
		=		SILTY CLAY FILL - Black, moist, stiff, high plasticity, trace rootlets.			0, 2 11	20 40 00	20 40 60 80
	-			- Trace medium to coarse grained sand, trace fine to coarse grained gravel below 0.23 m. SILTY CLAY - Brown, moist, stiff, high plasticity, trace coarse grained sand.	∕				•
	1-1-5		- No sand below 1.22 m.			TT S			
	Ame	2		SILTY SAND TO SANDY SILT - Light brown, moist, soft/loose, fine grained sand.			∏ sz		
AIL SEWERMAIN.GPJ		4 - 15		SILTY CLAY - Brown, moist, stiff, high plasticity, trace silt nodules (~1-3 mm diameter) 10 mm diameter gravel piece at 3.73 m.			88		
HIEF PEGUIS TR		6-20		- Grey below 5.49 m.			₽ S4		•
-0107-018/DESIGN/GEO/LOGS/C		7		- Firm below 6.10 m.			\$55 55		
GEOTECHNICAL-SOIL LOG PAPROJECTS/2012/12/0107-018/DESIGNIGEO/LOGS/CHIEF PEGUIS TRAIL SEWERMAIN GPU		8 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		- Slightly increased silt nodules (up to 5 mm diameter) below 9.14 m.			## ## ## ## ## ## ## ## ## ## ## ## ##		
HNICA	SAM	PLE TYPE		Auger Grab Split Spoon Core Barrel					
GEOTE		TRACTOF addock		INSPECTOR Ling Ltd. C. FRIESEN			PPROVEI DRAFT		PATE 1/26/12

K	GS ROUP		SUMMARY LOG REFERENCE NO.			DLE NO. H12-0	3	SHEET 2 of 3
ELEVATION (m)	(#) DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEРТН (m)	SAMPLE TYPE NUMBER RECOVERY %	SPT (N) blows/0.15 m A DYNAMIC CONE (N) blows/ft \(\triangle \) 20 40 60	Cu POCKET PEN (kPa) * Cu TORVANE (kPa) * 20 40 60 80 PL MC LL % 20 40 60 80
	12 40		- Trace silt pockets below 12:19 m. - Trace fine grained gravel below 12:50 m.			\$7 S8 S8		
S TRAIL SEWERMAIN.GPJ	15 15 15 15 15 15 15 15 15 15 15 15 15 1		- Reduced silt, trace coarse grained sand, no fine grained gravel below 15.24 m.			F10		
LOGSICHIEF PEGUIS TRAIL SEW	17— 17— 18— 60		- Occasional silt pockets/nodules below 16.92 m. - Grain Size Distribution: Gravel (0.7%), Sand (7.5%), Silt (19.4%), Clay (72.4%) at 17.68 m. - Trace fine grained gravel below 18.29 m.			₹312		
GEOTECHNICAL-SOIL LOG PAPROJECTS/2012/1017/013/DESIGN/GEO/LOGS/CHIEF PEGUIN D S S S S S S S S S S S S S S S S S S S	19 65		SILT TILL - Tan with grey, moist, compact, fine to coarse grained sand, fine grained gravel, trace clay.			S14 61	▲1; ▲1;	
MAS CON CON TECHNIC	MPLE TYPE NTRACTOR Paddock		Auger Grab Split Spoon Core Barrel INSPECTOR C. FRIESEN			PPROVE DRAFT		DATE 11/26/12

	K GF	GSROUP		SUMMARY LOG REFERENCE NO.			DLE NO. H12-0 .	3B	SH	EET 1	of 3
	CLII	ENT)JECT	Chief I	OF WINNIPEG - WATER AND WASTE DEPARTMEN Peguis Bridge Sewer Replacement f Red River and South of Chief Peguis Trail	VT.			JOB NO. GROUND ELEV. TOP OF PVC ELI		2-0107-0	118
-				/est of TH12-03				WATER ELEV. DATE DRILLED	11	/14/201	2
announcement of the contract o	DRII			ack Drill Rig, 125 mm ø Solid Stem				UTM (m)	N E	, - ,	
	ELEVATION (m)	(a) DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER RECOVERY %	SPT (N) blows/0.15 m DYNAMIC CONE (N) blows/ft 20 40 60	Cu TOF	40 60 MC 40 60 40 60 40 60	Pa) • 80
ľ		=		SILTY CLAY FILL - Black, moist, stiff, high plasticity, trace rootlets.			<u> </u>		:: :: ::	1::[::[::[:	
	-	1	\bowtie	- Trace medium to coarse grained sand, trace fine to coarse grained gravel below 0.23 m.	, II						1111
		1		SILTY CLAY - Brown, moist, stiff, high plasticity, trace coarse grained sand.							
		1		- No sand below 1.22 m.							
		- 5									100
	_	2-		SILTY SAND TO SANDY SILT - Light brown, moist, soft/loose, fine						- -	.]]]
		4		grained sand.							
l	***************************************	3-10									
		3 - 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
		بالب		SILTY CLAY - Brown, moist, stiff, high plasticity, trace silt nodules (~1-3 mm diameter).							
GP.		4-		- 10 mm diameter gravel piece at 3.73 m.							
MAIN		1 1									
SEWER		- 15									
TRAIL !		5-1									
GUIS				- Grey below 5.49 m.							
HEF P		6-									
JGS/C		1 = 20		- Firm below 6.10 m.			-				
SEO/L(1 7									
SIGN		7									
018/DE		25								444-	1111
2-0107-		8-									
2012/12		}									
ECTS		1									
PROJ		9-30									
LOG P		1		- Slightly increased silt nodules (up to 5 mm diameter) below 9.14 m.							
SOIL		1									
HNICAL	SAM	PLE TYP	E							1 1 1 1 1 1	111
GEOTECHNICAL-SOIL LOG PYPROJECTS2012/12-0107-018/DESIGNIGEO/LOGSICHIEF PEGUIS TRAIL SEWERMAIN GPJ		TRACTO addock		INSPECTOR Ling Ltd. C. FRIESEN			PROVEI RAFT		DATE 11/26/12	!	

ELEVATION (m) DEPTH GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG DEPTH (m) SAMPLE TYPE NUMBER RECOVERY %	SPT (N) blows/0.15 m ▲ DYNAMIC CONE (N) blows/ft △	PL MC LL
(m) (ft)	- Trace silt pockets below 12.19 m Trace fine grained gravel below 12.50 m.	11.6 11.8	20 40 60	20 40 60 80
15 - 50	- Reduced sift, trace coarse grained sand, no fine grained gravel below 15.24 m.			
17-L	- Ocassional silt pockets/nodules below 16.92 m.			
18 - 60	- Trace fine grained gravel below 18.29 m.			
21	SILT TILL - Tan with grey, moist, compact, fine to coarse grained sand, fine grained gravel, trace clay. AUGER REFUSAL AT 20.98 m Notes: 1. Stratigraphy assumed from TH12-03 drilled ~2 m away.	20.1 20.7 20.7 21.0		

KGS GROUP	SUMMARY LOG REFERENCE NO.			OLE NO. 'H12-0	3B	SHEET 3 of 3
ELEVATION (m) DEPTH GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEРТН (m)	SAMPLE TYPE NUMBER RECOVERY %	SPT (N) blows/0.15 m 4 DYNAMIC CONE (N) blows/ft 4	PL MC LI
22	2. Installed casagrande standpipe at a depth of 20.98 m with a stick-up of 0.66 m. 3. Installed PN 034985 at a depth of 11.84 m. below grade. 4. Backfilled test hole with silica sand between 20.98 and 20.12 m and bentonite chips from 20.12 m to grade. 5. Test hole squeezing at 8.53 m shortly after drilling.	α.	Q	SAMPI NUMB NUMB RECOV	20 40 60	% 20 40 60 80
SAMPLE TYPE CONTRACTOR Paddock Dri	INSPECTOR 11ing Ltd. C. FRIESEN			PPROVE	D	DATE 11/26/12

Αı	pp	end	lix	C
----	----	-----	-----	---

Laboratory Testing Results

Lab Requisition

TEST HOLE NUMBER	UMBER	크	1	-										
12 -01	SAMPLE NUMBER	DEPTH OF SAMPLE	TARE NUMBER (LAB USE ONLY)	MOISTURE	VISUAL CLASS.	ATTERBERG LIMITS	HYDROMETER	GRADATION	STD. PROCTOR	UNCONFINED AND AUXILLARY TESTS				Soil Description/ Comments
13-01	629	0.5-1		X										CLAY (Fill)
	630	3 -3.51		/										CLAY (FIN)
	631	4.5-5'		X										CLAY CFIID.
	632	6-7'		X										CLAY
	G33	9.5-10'		X										ALWVIAL SILT
	T34	10-12'				/				X				ALWVIAL SILT
	635	14-14.51		X										-h-:
	SB36A	15.5 - 16.5		X								4		-11-
	SB36B	17 \$-18.5		X								1		11 1
	5B36C	19.5 - 20'		X										M: The state of th
	SB37A	20-21		X										115
	SB37B	21'6"-21'8"		X										11
, 1	2837C	24-24.51				44								41
	SB384	26-27		X	1	9							4	11"
	SB38B					1	1						10.0	Some Sity
	5839	33-341		X			X							li gray
	SBYO	37 -38		X										li silt
		40 -42'						0						Sund Silly / Clay of - maybe trans
		42-4351		X	_					1		p		W Serel silly
-	3B47B	43.5-45"	2		_	-4	D							Silt Claver
		49-50'	-		_	-	1	-		_				
	2249	50 -51.51	k		_				_					. 11
	2242R	55 - 56.5'		X	_	_		-	-					Till
	5345A	54-55'		-					-	SHO	UGH	CTILL)	NO MOISTURE (JUST TO LOOK)
/		55'6"-61'		-	_	-	_	_	_	-				
	857	61'-66'		-	_	-	-	_		_			1	
		66'- 71'			-		-	-	-					
	859	71'- 76'		_	+			1		_				
- 0	1B60	31-86			-	4	-	4	_			-		
0	CB61	01-06		-	-	-	-	_	1	-				
0	CB 62	86 - 91'		_	_			1	-	_				
1	B 63	91'- 96'		-	1	-			_					
- 1		96-1011												
- 0	2865	101-106					1							
	B66	106'-14												
	867	111'-116'												
C	Be8	116'-121'												
REQUE	STED BY:	BT											R	EQUISITION NO.
		NOV 15/13						-						43.7
	PORT TO:	NOF						-				-	at each	1 3

Lab Requisition

	CLIE	A SSOCICH	ed Er	oigr	eeri	ng	_		FIE	LDTE	CHRI	CIAN: _	O113 004 00 SR/BH.
- FEST HOLE NUMBER	SAMPLE NUMBER	8 DEPTH OF SAMPLE	TARE NUMBER (LAB USE ONLY)	MOISTURE	VISUAL CLASS.	ATTERBERG LIMITS	HYDROMETER	GRADATION	STD. PROCTOR	UNCONFINED AND AUXILLARY TESTS	Ruth	WSLUT	Soil Description/ Comments
FH13-0	Y SBI	6-8		X									CLAY
-	1882	8-10.		X									1
1	T3	10-12		1						W			
-	SB4	12'-14		K			_	1					
	SBS	14'-16'	-	X			4	1					
-	SB6	16,-18,		1			_						
-	SB7	18'-20'	-	1			1	-	_				
-	T8 SB9	20'-22'	-	1	-		+	-	-	X		-	
	SBIO	22'-24'		1		-	+	-	+			-	
-	SBII	24'-26'		1	-	-	-	+	+	\dashv		+	
=	2815	28,-30,		1		+	+	+	\dashv	\dashv	\dashv	+	
1	Ti3	30'-32'		1		+	+	+	-	1	-		Ĭ
1	SBIY	32'-34'		X		\top	1		1				
	SBIS	34'-36'		/			1		\forall	\dashv			
	SBIG	36' -38'		5			1		1				
	SBIF	38,-40,		X					1				
	SB17 T18 SB19	401-421		1					4	1	10		many be transitive
	SB 19	42'-44'		X					1				
	5820	44'-46'		/	1								
	SB 21	46'-48' 49'4"-50' 50'-51.5'		1									
	SB22	49'4"-50"		X									SILT (TILL)
2	28873	50-51.5		X									CLAY
	5B24	52'-54'	- 1	/									SILT CTILL)
1 22	25	54'-54'4" 55'8"-61'		X									SILT CTILL)
10	CB 76	558"-61											ROCK CBOULDER)
100	CB27	61,-66,				1		-					limestone
· W	CB28	66-71				_	-	_		_	1		limestone
3-04	629	1.5-2.5'		2	_	_	-	-	4	1			CLAY
creut)	430	6'-7'		1		-	-	-	-		1		
	631			1		_		4	-	1	_		*
7	632	9-10'		1		+	1	-	4	-	-		1
¥	Re les	el tag	de	1	- 70	7 -	-	46	+	+	+	+	
7	Ce 166	cl 749	\$	-	20				+	+	+	-	
					230		7 4	18	-	-	-	-	
					231				+	-		-	
	T. Trest motors, and	2.7			2-130		7	49	4			1	REQUISITION NO.
	ESTED BY:												
	TIGHT INTE	Nov 15/1	2										

Lab Requisition

TREK GEOTECHNICAL 1712 St. James Street Winnipeg, Manitoba R3H 0L3 T 204.975.9433 F 204.975.9435

TEST HOLE NUMBER	SAMPLE NUMBER	DEPTH OF SAMPLE	TARE NUMBER (LAB USE ONLY)	MOISTURE	VISUAL CLASS.	ATTERBERG LIMITS	HYDROMETER	GRADATION	STD. PROCTOR	UNCONFINED AND AUXILLARY TESTS					Soil Description/ Comments
H13-05	69-22	53'-54'5" 53.5'-55' 55'-60' 60'-65' 65'-10' 70'-75' 75'-80'7' 39'8'-89'7' 89'7'-99'1" 99'8'-106'1 106'-115'		/											
	CR +0	53.5 - 55	-								1				
1	CB +1	22 - 60													
-	CB74	60 - 65									-				1
-	CDZU	70' 25'							-		-	-	-		
-	CR75	75-80 70	404					-					-	-	
~	CB76	79'10"- BUIR"													
-	CB77	84.8, -80, 3,													
-	CB78	89'7"- 94'3"													
_	CB79	94131- 9911"													
_	CBBO	991 - 1061	216"							2					
1	CBGI	102'6"-106"			-		-	-	-			-	_		
	CB 92	106 110		-	-	-	-	-	-	-	-	-	-	-	
	G. 6.	110, -112.			+	-	+	-	-	-	-	+	-	+	
	0-				\dashv	1		+	+		-		+	+	
				1	7		1				1	1		+	
				1	-	4	-	1							
				-	-	-	-	-	-	-	-	-	-	-	•
			-	+	+	-	+	+	+	-	+	+	+	-	
				-	+	+	+	-	+	+	+	+	+	+	
				+	+	+	-	-	-	-	+	+	+	-	
				+	+	1	+	1	+	+	+	+	+	+	
						1		\top	1	\neg	1		1	+	
											1				
					1		-1					1			Ĭ.
				-	_	-	-	-				_		_	
														P	QUISITION NO.
REQU	ESTED BY: _	BT												E.C.	ACCIONITION NO.

Project No.

0115 004 00

Client

Associated Engineering

Project

Detailed Design North Kildonan Feedermain

Sample Date

22-Oct-13

Test Date

24-Oct-13

Technician

Chiran Peiris

Test Hole	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01
Depth (m)	0.2 - 0.3	0.9 - 1.1	1.4 - 1.5	1.8 - 2.1	2.9 - 4.6	5.9 - 6.1
Sample #	G29	G30	G31	G32	G33	G35
Tare ID	P30	КЗ	F32	F124	D8	N99
Mass of tare	8.3	8.4	8.2	8.3	8.4	8.4
Mass wet + tare	339.3	399.8	439.9	224.7	390.2	403.8
Mass dry + tare	270.3	327.4	352.9	191.4	306.6	309.4
Mass water	69.0	72.4	87.0	33.3	83.6	94.4
Mass dry soil	262.0	319.0	344.7	183.1	298.2	301.0
Moisture %	26.3%	22.7%	25.2%	18.2%	28.0%	31.4%

Test Hole	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01
Depth (m)	4.3 - 4.4	4.7 - 4.9	5.3 - 5.6	6.1 - 6.4	6.6 - 6.6	7.3 - 7.5
Sample #	SB 36A	SB 36B	SB 36C	SB 37A	SB 37B	SB 37C
Tare ID	F104	E10	Z30	Z75	F102	F66
Mass of tare	8.5	8.8	8.3	8.4	8.5	8.4
Mass wet + tare	588	468.8	653.3	446.3	387.3	649.9
Mass dry + tare	444.3	363.1	479.5	334.3	296.3	498.5
Mass water	143.7	105.7	173.8	112.0	91.0	151.4
Mass dry soil	435.8	354.3	471.2	325.9	287.8	490.1
Moisture %	33.0%	29.8%	36.9%	34.4%	31.6%	30.9%

Test Hole	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01
Depth (m)	7.9 - 8.2	8.5 - 8.8	10.1 - 10.4	11.3 - 11.6	12.8 - 13.3	13.3 - 13.7
Sample #	SB 38A	SB 38B	SB 39	SB 40	SB 42A	SB 42B
Tare ID	H79	E96	N90	Z64	Z101	F33
Mass of tare	8.4	8.6	8.5	8.2	8.3	8.4
Mass wet + tare	398.0	599.7	656.3	470.9	474.1	457.6
Mass dry + tare	296.2	486.4	501.9	379.0	386.3	361.1
Mass water	101.8	113.3	154.4	91.9	87.8	96.5
Mass dry soil	287.8	477.8	493.4	370.8	378.0	352.7
Moisture %	35.4%	23.7%	31.3%	24.8%	23.2%	27.4%

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Sample Date 22-Oct-13
Test Date 24-Oct-13
Technician Chiran Peiris

Test Hole	TH13-01	TH13-01	TH13-01	TH13-04	TH13-04	TH13-04
Depth (m)	14.9 - 15.2	15.2 - 15.7	16.8 - 17.2	1.8 - 2.4	2.4 - 3.0	3.7 - 4.3
Sample #	SB 43	SB 44	SB 45B	SB 1	SB 2	SB 4
Tare ID	W39	F29	N54	F56	D29	Z50
Mass of tare	8.2	8.3	8.3	8.2	8.1	8.2
Mass wet + tare	403.8	379.1	294.2	359.7	403.0	626.7
Mass dry + tare	318.9	315.9	268.0	228.2	258.3	410.1
Mass water	84.9	63.2	26.2	131.5	144.7	216.6
Mass dry soil	310.7	307.6	259.7	220.0	250.2	401.9
Moisture %	27.3%	20.5%	10.1%	59.8%	57.8%	53.9%

Test Hole	TH13-04	TH13-04	TH13-04	TH13-04	TH13-04	TH13-04
Depth (m)	4.3 - 4.9	4.9 - 5.5	5.5 - 6.1	6.7 - 7.3	7.3 - 7.9	7.9 - 8.5
Sample #	SB 5	SB 6	SB 7	SB 9	SB 10	SB 11
Tare ID	N71	N37	H41	N68	P21	W16
Mass of tare	8.4	8.6	8.4	8.3	8.5	8.3
Mass wet + tare	466.7	502.5	369.4	402.5	481.1	505.9
Mass dry + tare	306.8	327.4	250.7	283.3	326.2	344.5
Mass water	159.9	175.1	118.7	119.2	154.9	161.4
Mass dry soil	298.4	318.8	242.3	275.0	317.7	336.2
Moisture %	53.6%	54.9%	49.0%	43.3%	48.8%	48.0%

Test Hole	TH13-04	TH13-04	TH13-04	TH13-04	TH13-04	TH13-04
Depth (m)	8.5 - 9.1	9.8 - 10.4	10.4 - 11.0	11.0 - 11.6	11.6 - 12.2	12.8 - 13.4
Sample #	SB 12	SB 14	SB 15	SB 16	SB 17	SB 19
Tare ID	F89	F53	F55	Z130	W27	A103
Mass of tare	8.3	8.5	8.4	8.3	8.2	8.4
Mass wet + tare	649.4	602.3	542.2	781.3	552.8	551.4
Mass dry + tare	421.3	472.1	363.0	520.3	354.8	382.3
Mass water	228.1	130.2	179.2	261.0	198.0	169.1
Mass dry soil	413.0	463.6	354.6	512.0	346.6	373.9
Moisture %	55.2%	28.1%	50.5%	51.0%	57.1%	45.2%

Project No.

0115 004 00

Client

Associated Engineering

Project

Detailed Design North Kildonan Feedermain

Sample Date 22-Oct-13
Test Date 24-Oct-13
Technician Chiran Peiris

Test Hole	TH13-04	TH13-04	TH13-04	TH13-04	TH13-04	TH13-04
Depth (m)	13.4 - 14.0	14.0 - 14.6	15.1 - 15.2	15.2 - 15.7	15.8 - 16.5	16.5 - 16.6
Sample #	SB 20	SB 21	SB 22	SB 23	SB 24	SB 25
Tare ID	A26	E38	W65	W15	P08	F14
Mass of tare	8.2	8.3	8.3	8.3	8.5	8.5
Mass wet + tare	402.6	568.1	582.7	350.7	486.7	337.1
Mass dry + tare	265.1	415.6	529.6	261.9	439.4	310.3
Mass water	137.5	152.5	53.1	88.8	47.3	26.8
Mass dry soil	256.9	407.3	521.3	253.6	430.9	301.8
Moisture %	53.5%	37.4%	10.2%	35.0%	11.0%	8.9%

Test Hole	TH13-04	TH13-04	TH13-04	TH13-04	
Depth (m)	0.5 - 0.8	1.2 - 1.5	1.8 - 2.1	2.7 - 3.0	
Sample #	G46	G47	G48	G49	
Tare ID	D15	K1	N65	N72	
Mass of tare	8.4	8.3	8.4	8.4	
Mass wet + tare	366.8	373.1	414.0	380.5	
Mass dry + tare	296.0	294.2	260.6	244.0	
Mass water	70.8	78.9	153.4	136.5	
Mass dry soil	287.6	285.9	252.2	235.6	
Moisture %	24.6%	27.6%	60.8%	57.9%	

Test Hole			
Depth (m)			
Sample #			
Tare ID			
Mass of tare			
Mass wet + tare			
Mass dry + tare			
Mass water			
Mass dry soil			
Moisture %			

Client Associated Engineering

Chiran Peiris

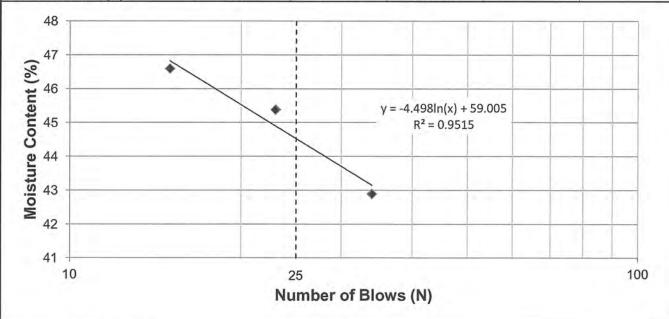
Project Detailed design of North Kildonan Feedermain

 Test Hole
 TH13-01

 Sample #
 T 34

 Depth (m)
 3-3.5

 Sample Date
 12-Nov-13


 Test Date
 25-Nov-13

Liquid Limit	45	
Plastic Limit	15	
Plasticity Index	29	

Liquid Limit

Technician

Trial #	1	2	3	4	5
Number of Blows (N)	34	15	23		
Mass Wet Soil + Tare (g)	18.021	19.111	19.345		
Mass Dry Soil + Tare (g)	16.832	17.544	17.640		
Mass Tare (g)	14.060	14.181	13.883		
Mass Water (g)	1.189	1.567	1.705		
Mass Dry Soil (g)	2.772	3.363	3.757		
Moisture Content (%)	42.893	46.595	45.382		

Plastic Limit

I lastic Littit					
Trial #	1	2	3	4	5
Mass Wet Soil + Tare (g)	20.660	20.395			
Mass Dry Soil + Tare (g)	19.799	19.534			
Mass Tare (g)	14.222	13.986			
Mass Water (g)	0.861	0.861			
Mass Dry Soil (g)	5.577	5.548			
Moisture Content (%)	15.438	15.519			

Client Associated Engineering

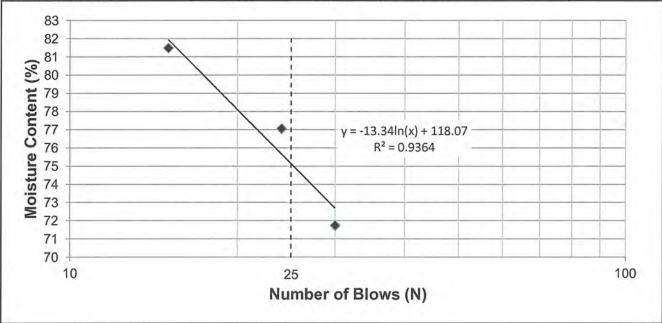
Project Detailed design of North Kildonan Feedermain

 Test Hole
 TH13-01

 Sample #
 T 08

 Depth (m)
 6-6.7

 Sample Date
 15-Nov-13


 Test Date
 25-Nov-13

 Technician
 Chiran Peiris

Liquid Limit 75	
Plastic Limit 18	
Plasticity Index 57	

Liquid Limit

Trial #	1	2	3	4	5
Number of Blows (N)	30	24	15		
Mass Wet Soil + Tare (g)	19.850	20.389	18.145		
Mass Dry Soil + Tare (g)	17.367	17.635	16.305		
Mass Tare (g)	13.906	14.061	14.047		
Mass Water (g)	2.483	2.754	1.840		
Mass Dry Soil (g)	3.461	3.574	2.258		
Moisture Content (%)	71.742	77.057	81.488		

Plastic Limit

Trial #	1	2	3	4	5
Mass Wet Soil + Tare (g)	20.611	20.638			
Mass Dry Soil + Tare (g)	19.619	19.630			
Mass Tare (g)	14.222	13.967			1
Mass Water (g)	0.992	1.008			
Mass Dry Soil (g)	5.397	5.663			
Moisture Content (%)	18.381	17.800			

Client Associated Engineering

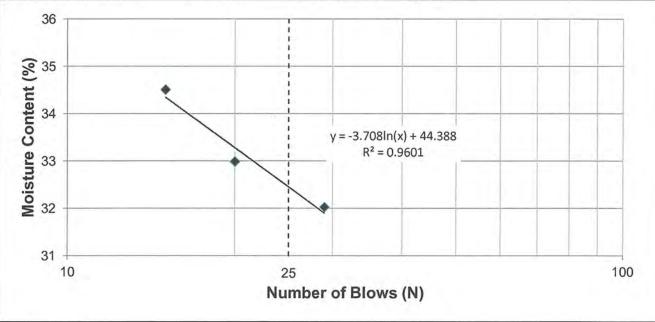
Project Detailed design of North Kildonan Feedermain

 Test Hole
 TH13-01

 Sample #
 SB 42B

 Depth (m)
 13-13.7

 Sample Date
 15-Nov-13


 Test Date
 25-Nov-13

 Technician
 Chiran Peiris

Plasticity Index	17	
Plastic Limit	15	
Liquid Limit	32	

Liquid Limit

Trial #	1	2	3	4	5
Number of Blows (N)	15	20	29		
Mass Wet Soil + Tare (g)	19.717	20.793	21.239		
Mass Dry Soil + Tare (g)	18.267	19.125	19.516		
Mass Tare (g)	14.065	14.069	14.136		
Mass Water (g)	1.450	1.668	1.723		
Mass Dry Soil (g)	4.202	5.056	5.380		
Moisture Content (%)	34.507	32.991	32.026		

Plastic Limit

Trial #	1	2	3	4	5
Mass Wet Soil + Tare (g)	20.928	20.248			<u></u>
Mass Dry Soil + Tare (g)	20.033	19.440			
Mass Tare (g)	14.121	14.019			
Mass Water (g)	0.895	0.808			
Mass Dry Soil (g)	5.912	5.421			
Moisture Content (%)	15.139	14.905			

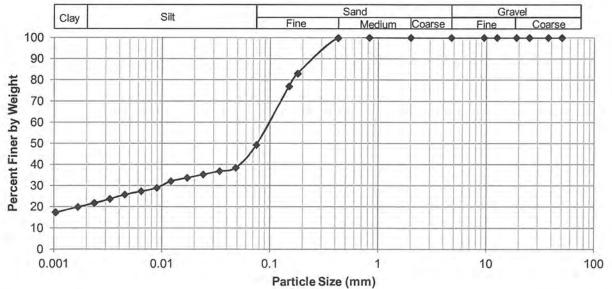
Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

 Test Hole
 TH13-01

 Sample #
 SB 39

 Depth (m)
 4.6 - 5.0


 Sample Date
 15-Nov-13

 Test Date
 22-Nov-13

 Technician
 Chiran Peiris

Gravel	0.0%
Sand	50.7%
Silt	27.3%
Clay	22.0%

Particle Size Distribution Curve

Gravel		Sand		Silt and Clay	
Particle Size (mm)	Percent Passing	Particle Size (mm)	Percent Passing	Particle Size (mm)	Percent Passing
50.0	100.00	4.75	100.00	0.0750	49.26
37.5	100.00	2.00	100.00	0.0484	38.46
25.0	100.00	0.825	100.00	0.0343	36.87
19.0	100.00	0.425	99.84	0.0242	35.28
12.5	100.00	0.180	83.00	0.0171	33.69
9.50	100.00	0.150	76.96	0.0121	32.11
4.75	100.00	0.075	49.26	0.0089	28.93
				0.0064	27.34
				0.0045	25.75
				0.0033	23.74
				0.0024	21.74
				0.0017	19.86
				0.0010	17.39

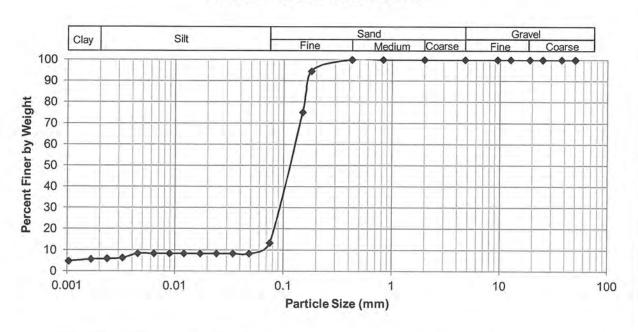
Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

 Test Hole
 TH13-01

 Sample #
 SB 43

 Depth (m)
 4.6 - 5.0


 Sample Date
 15-Nov-13

 Test Date
 22-Nov-13

 Technician
 Chiran Peiris

Gra	vel	0.0%	
San	d	50.7%	
Silt		27.3%	
Clay	1	22.0%	

Particle Size Distribution Curve

Gravel		Sand		Silt and Clay	
Particle Size (mm)	Percent Passing	Particle Size (mm)	Percent Passing	Particle Size (mm)	Percent Passing
50.0	100.00	4.75	100.00	0.0750	13.29
37.5	100.00	2.00	100.00	0.0484	8.28
25.0	100.00	0.825	99.98	0.0343	8.28
19.0	100.00	0.425	99.96	0.0242	8.28
12.5	100.00	0.180	94.55	0.0171	8.28
9.50	100.00	0.150	75.09	0.0121	8.28
4.75	100.00	0.075	13.29	0.0089	8.28
				0.0064	8.28
		(0.0045	8.28
				0.0033	6.27
				0.0024	5.86
				0.0017	5.57
				0.0010	4.68

Project No.

0115 004 00

Client

Associated Engineering

Project

Detailed Design North Kildonan Feedermain

Test Hole

TH13-01

Sample #

T34

Depth (m)

3.0 - 3.7

Sample Date

15-Nov-13

Test Date

20-Nov-13

Technician

Hachem Ahmed

Tube Extraction

Recovery (mm) 550

Bottom - 3.7 m		3.0 m - Top
PP		Qu
Tv		YBulk
Visual		
Moisture	Some clay	With clay
180 mm	210 mm	160 mm

Visual Class			Moisture Co	ntent	
Material	Silt (Alluvial)		Tare ID		N03
Composition	Some clay to with c	lay	Mass tare (g)		8.4
Trace sand			Mass wet + ta	re (g)	493.8
Trace oxidatio	n		Mass dry + tar	re (g)	370.3
Trace organics	s (roots)		Moisture %	-	34.1%
			Unit Weight		
			Bulk Weight (g)	1097.00
Color	dark grey				
Moisture	moist		Length (mm)	1 _	140.95
Consistency	stiff			2	140.82
Plasticity	high plasticity	high plasticity			140.93
Structure	-			4	140.14
Gradation	-		Average Leng	th (m)	0.141
Torvane			Diam. (mm)	1	71.94
Reading		0.70		2	71.66
Vane Size (s,r	n,l)	m		3	72.51
Undrained Sh	ear Strength (kPa)	68.7		4	72.37
			Average Diam	eter (m)	0.072
Pocket Pen	etrometer				
Reading	1	1.30	Volume (m ³)		5.75E-04
	2	1.60	Bulk Unit Weig	ght (kN/m³)	18.7
	3	1.40	Bulk Unit Weig		119.1
	Average	1.43	Dry Unit Weigl		14.0
Undrained Sh	ear Strength (kPa)	70.3	Dry Unit Weigl		88.8

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Test Hole TH13-01 Sample # T34 Depth (m) 3.0 - 3.7 Sample Date 15-Nov-13

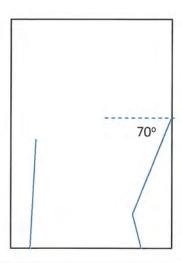
Test Date 20-Nov-13
Technician Hachem Ahmed

Unconfined Strength

	kPa	ksf
Max q _u	45.1	0.9
Max S _u	22.5	0.5

Specimen Data

Description Silt (Alluvial) - Some clay to with clay, Trace sand, Trace oxidation, Trace organics (roots), dark grey, moist, stiff, high plasticity

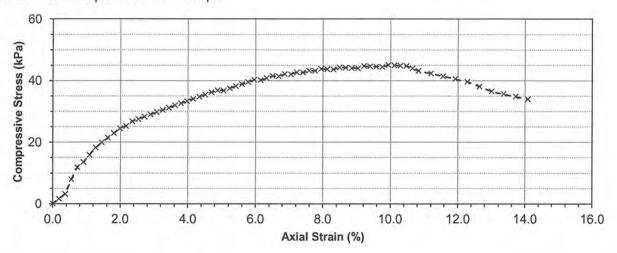

Length	140.7	(mm)	Moisture %	34%	
Diameter	72.1	(mm)	Bulk Unit Wt.	18.7	(kN/m^3)
L/D Ratio	2.0		Dry Unit Wt.	14.0	(kN/m^3)
Initial Area	0.00409	(m ²)	Liquid Limit	-	,
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	- 9	

Undrained Shear Strength Tests

Torvane		Pocket Penetrometer				
Reading	Undrained SI	near Strength	Reading	Undrained S	hear Strength	
tsf	kPa	ksf	tsf	kPa	ksf	
0.70	68.7	1.43	1.30	63.8	1.33	
Vane Size			1.60	78.5	1.64	
m			1.40	68.7	1.43	
			1.43	70.3	1.47	

Failure Geometry

Sketch:


Photo:

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Unconfined Compression Test Graph

Unconfined Compression Test Data

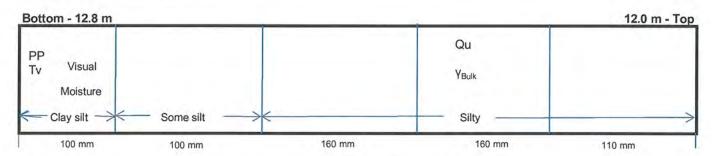
Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004085	0.0	0.00	0.00
10	2	0.2540	0.18	0.004092	6.5	1.60	0.80
20	4	0.5080	0.36	0.004100	13.1	3.19	1.59
30	10	0.7620	0.54	0.004107	32.7	7.96	3.98
40	15	1.0160	0.72	0.004115	49.1	11.93	5.97
50	17	1.2700	0.90	0.004122	55.7	13.50	6.75
60	20	1.5240	1.08	0.004130	65.5	15.86	7.93
70	23	1.7780	1.26	0.004137	75.3	18.21	9.11
80	25	2.0320	1.44	0.004145	82.4	19.89	9.94
90	27	2.2860	1.62	0.004153	89.0	21.43	10.72
100	29	2.5400	1.81	0.004160	95.6	22.98	11.49
110	31	2.7940	1.99	0.004168	102.2	24.53	12.26
120	32	3.0480	2.17	0.004176	105.5	25.27	12.63
130	34	3.3020	2.35	0.004183	112.1	26.80	13.40
140	35	3.5560	2.53	0.004191	115.4	27.53	13.77
150	36	3.8100	2.71	0.004199	118.7	28.27	14.13
160	37	4.0640	2.89	0.004207	122.0	29.00	14.50
170	38	4.3180	3.07	0.004214	125.3	29.73	14.87
180	39	4.5720	3.25	0.004222	128.6	30.46	15.23
190	40	4.8260	3.43	0.004230	131.9	31.18	15.59
200	41	5.0800	3.61	0.004238	135.2	31.90	15.95
210	42	5.3340	3.79	0.004246	138.5	32.61	16.31
220	43	5.5880	3.97	0.004254	141.8	33.32	16.66
230	44	5.8420	4.15	0.004262	145.1	34.03	17.02

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Unconfined Compression Test Data (cont'd)

Elapsed Time (s)	Axial Disp. (mm)	Deflection (mm)	Axial Strain (%)	Corrected Area (m²)	Axial Load (N)	Compressive Stress, q _u (kPa)	
240	45	6.0960	4.3323	0.004270	148.3	34.74	17.37
250	46	6.3500	4.51	0.004278	151.7	35.46	17.73
260	47	6.6040	4.69	0.004286	155.0	36.16	18.08
270	48	6.8580	4.87	0.004294	158.3	36.85	18.43
280	48	7.1120	5.05	0.004303	158.3	36.78	18.39
290	49	7.3660	5.23	0.004311	161.6	37.48	18.74
300	50	7.6200	5.42	0.004319	164.9	38.17	19.08
310	51	7.8740	5.60	0.004327	168.1	38.86	19.43
320	52	8.1280	5.78	0.004336	171.4	39.54	19.77
330	53	8.3820	5.96	0.004344	174.7	40.22	20.11
340	53	8.6360	6.14	0.004352	174.7	40.15	20.07
350	54	8.8900	6.32	0.004361	178.0	40.82	20.41
360	55	9.1440	6.50	0.004369	181.4	41.51	20.75
370	55	9.3980	6.68	0.004377	181.4	41.43	20.71
380	56	9.6520	6.86	0.004386	184.6	42.10	21.05
390	56	9.9060	7.04	0.004394	184.6	42.02	21.01
400	57	10.1600	7.22	0.004403	187.9	42.68	21.34
410	57	10.4140	7.40	0.004412	187.9	42.60	21.30
420	58	10.6680	7.58	0.004420	191.2	43.26	21.63
430	58	10.9220	7.76	0.004429	191.2	43.18	21.59
440	59	11.1760	7.94	0.004438	194.5	43.84	21.92
450	59	11.4300	8.12	0.004446	194.5	43.75	21.87
460	59	11.6840	8.30	0.004445	194.5	43.66	21.83
470	60	11.9380	8.48	0.004464	197.8	44.31	22.16
480	60	12.1920	8.66	0.004473	197.8	44.23	22.10
490	60	12.4460	8.85	0.004473	197.8	44.14	22.07
500	60	12.7000	9.03	0.004481	197.8	44.05	22.07
510	61	12.7000	9.03	0.004490	201.1	44.70	22.35
520	61	13.2080	9.39		201.1	44.61	22.30
530	61	13.4620	9.57	0.004508 0.004517	201.1	44.52	22.26
		13.7160	9.75		201.1	44.43	22.22
540	61			0.004526	201.1	45.07	22.53
550	62	13.9700	9.93	0.004535			
560	62	14.2240	10.11	0.004544	204.4	44.98	22.49
570	62	14.4780	10.29	0.004554	204.4 204.4	44.89	22.44
580	62	14.7320	10.47	0.004563		44.80	22.40
590	61	14.9860	10.65	0.004572	201.1	43.99	21.99
600	60	15.2400	10.83	0.004581	197.8	43.18	21.59
620	59	15.7480	11.19	0.004600	194.5	42.29	21.14
640	58	16.2560	11.55	0.004619	191.2	41.40	20.70
660	57	16.7640	11.91	0.004638	187.9374	40.52	20.26
680	56	17.2720	12.27	0.004657	184.6457	39.65	19.83
700	54	17.7800	12.64	0.004676	178.0178	38.07	19.04
720	52	18.2880	13.00	0.004695	171.4345	36.51	18.26
740	51	18.7960	13.36	0.004715	168.1428	35.66	17.83


Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Test Hole TH13-01
Sample # T41
Depth (m) 12 - 12.8
Sample Date 15-Nov-13
Test Date 21-Nov-13
Technician Hachem Ahmed

Tube Extraction

Recovery (mm) 630

Visual Class	sification		Moisture Cor	ntent	
Material	Caly and silt (Alluvial)		Tare ID		f151
Composition	Some silt to silty		Mass tare (g)	T	8.4
Trace organics	S		Mass wet + tar	re (g)	409.4
Trace oxidatio	n		Mass dry + tar	re (g)	309.3
			Moisture %	_	33.3%
		-	Unit Weight		
-7-5 - 1			Bulk Weight (g		1161.70
Color	Dark grey			· · · · · · · ·	
Moisture	Moist		Length (mm)	1	151.52
Consistency	Stiff			2	151.64
Plasticity	Intermediate			3	151.82
Structure	-			4	151.37
Gradation	2		Average Lengt	th (m)	0.152
Torvane			Diam. (mm)	1	72.38
Reading		0.52	4-2-4-	2	72.58
Vane Size (s,	m,l)	m		3	72.38
Undrained Sh	ear Strength (kPa)	51.0		4	72.55
			Average Diame	eter (m)	0.072
Pocket Pen	etrometer			-	
Reading	1	1.10	Volume (m ³)		6.25E-04
	2	1.20	Bulk Unit Weig	ght (kN/m³)	18.2
	3	1.10	Bulk Unit Weight (pcf)		116.0
	Average	1.13	Dry Unit Weigh	nt (kN/m³)	13.7
Undrained Sh	ear Strength (kPa)	55.6	Dry Unit Weigh		87.0

Client Associated Engineering

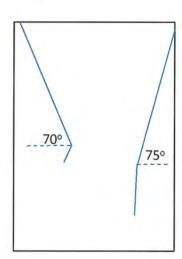
Project Detailed Design North Kildonan Feedermain

Test Hole TH13-01 Sample # T41 Depth (m) 12 - 12.8 Sample Date 15-Nov-13 **Test Date** 21-Nov-13 Technician Hachem Ahmed

Unconfined	Strength	
	kPa	ksf
Max q _u	106.6	2.2
May S	E2 2	1.1

Specimen Data

Description Caly and silt (Alluvial) - Some silty to silt, Trace organics, Trace oxidation, Dark grey, Moist, Stiff, Intermediate

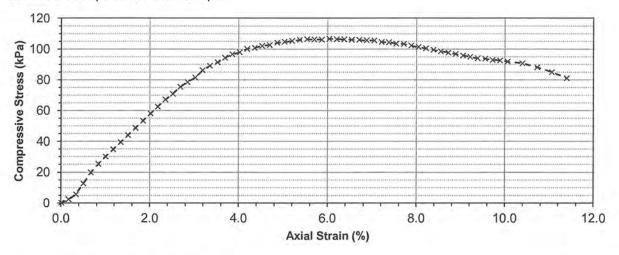

151.6	(mm)	Moisture %	33%	
72.5	(mm)	Bulk Unit Wt.	18.2	(kN/m^3)
2.1		Dry Unit Wt.	13.7	(kN/m^3)
0.00413	(m ²)	Liquid Limit	-	1,000
1.00	(%/min)	Plastic Limit	-	
		Plasticity Index	-	
	72.5 2.1 0.00413	72.5 (mm) 2.1 0.00413 (m ²)	72.5 (mm) 2.1 0.00413 (m²) 1.00 (%/min) Bulk Unit Wt. Dry Unit Wt. Liquid Limit Plastic Limit	72.5 (mm) Bulk Unit Wt. 18.2 2.1 Dry Unit Wt. 13.7 0.00413 (m²) Liquid Limit - 1.00 (%/min) Plastic Limit -

Undrained Shear Strength Tests


Torvane		Pocket Penetrometer				
Reading	Undrained SI	near Strength	Reading	Undrained S	hear Strength	
tsf	kPa	ksf	tsf	kPa	ksf	
0.52	51.0	1.07	1.10	54.0	1.13	
Vane Size			1.20	58.9	1.23	
m			1.10	54.0	1.13	
			1.13	55.6	1.16	

Failure Geometry

Sketch:


Photo:

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004125	0.0	0.00	0.00
10	3	0.2540	0.17	0.004132	9.8	2.37	1.19
20	7	0.5080	0.34	0.004139	22.9	5.53	2.76
30	16	0.7620	0.50	0.004146	52.4	12.63	6.32
40	25	1.0160	0.67	0.004153	82.4	19.85	9.92
50	32	1.2700	0.84	0.004160	105.5	25.36	12.68
60	38	1.5240	1.01	0.004167	125.3	30.07	15.04
70	44	1.7780	1.17	0.004174	145.1	34.75	17.38
80	50	2.0320	1.34	0.004181	164.9	39.43	19.71
90	56	2.2860	1.51	0.004188	184.6	44.09	22.04
100	62	2.5400	1.68	0.004195	204.4	48.72	24.36
110	68	2.7940	1.84	0.004203	224.2	53.35	26.67
120	74	3.0480	2.01	0.004210	244.0	57.96	28.98
130	80	3.3020	2.18	0.004217	263.8	62.55	31.28
140	86	3.5560	2.35	0.004224	283.5	67.12	33.56
150	91	3.8100	2.51	0.004231	300.0	70.91	35.45
160	97	4.0640	2.68	0.004239	319.8	75.45	37.73
170	101	4.3180	2.85	0.004246	333.1	78.45	39.22
180	105	4.5720	3.02	0.004253	346.6	81.48	40.74
190	111	4.8260	3.18	0.004261	366.8	86.08	43.04
200	115	5.0800	3.35	0.004268	380.2	89.09	44.54
210	118	5.3340	3.52	0.004276	390.3	91.29	45.65
220	122	5.5880	3.69	0.004283	403.8	94.28	47.14
230	125	5.8420	3.85	0.004290	413.9	96.47	48.24

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Unconfined Compression Test Data (cont'd)

Elapsed Time (s)	Axial Disp. (mm)	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	and the state of the party of t
240	127	6.0960	4.0214	0.004298	420.6	97.87	48.93
250	130	6.3500	4.19	0.004305	430.7	100.04	50.02
260	131	6.6040	4.36	0.004313	434.1	100.65	50.32
270	133	6.8580	4.52	0.004321	440.8	102.03	51.01
280	134	7.1120	4.69	0.004328	444.2	102.63	51.31
290	136	7.3660	4.86	0.004336	451.0	104.01	52.00
300	137	7.6200	5.03	0.004343	454.3	104.59	52.30
310	138	7.8740	5.19	0.004351	457.7	105.19	52.59
320	139	8.1280	5.36	0.004359	461.1	105.78	52.89
330	140	8.3820	5.53	0.004367	464.4	106.35	53.18
340	140	8.6360	5.70	0.004374	464.4	106.16	53.08
350	140	8.8900	5.86	0.004382	464.4	105.98	52.99
360	141	9.1440	6.03	0.004390	467.8	106.56	53.28
370	141	9.3980	6.20	0.004398	467.8	106.37	53.18
380	141	9.6520	6.37	0.004406	467.8	106.18	53.09
390	141	9.9060	6.53	0.004414	467.8	105.99	52.99
400	141	10.1600	6.70	0.004421	467.8	105.80	52.90
410	141	10.4140	6.87	0.004429	467.8	105.61	52.80
420	141	10.6680	7.04	0.004437	467.8	105.42	52.71
430	140	10.9220	7.21	0.004445	464.4	104.47	52.23
440	140	11.1760	7.37	0.004453	464.4	104.28	52.14
450	139	11.4300	7.54	0.004462	461.1	103.34	51.67
460	139	11.6840	7.71	0.004470	461.1	103.15	51.58
470	138	11.9380	7.88	0.004478	457.7	102.21	51.11
480	137	12.1920	8.04	0.004486	454.3	101.27	50.64
490	136	12.4460	8.21	0.004494	451.0	100.34	50.17
500	135	12.7000	8.38	0.004502	447.6	99.41	49.71
510	134	12.9540	8.55	0.004511	444.2	98.48	49.24
520	133	13.2080	8.71	0.004519	440.8	97.55	48.78
530	132	13.4620	8.88	0.004527	437.5	96.64	48.32
540	131	13.7160	9.05	0.004536	434.1	95.71	47.86
550	130	13.9700	9.22	0.004544	430.7	94.79	47.40
560	129	14.2240	9.38	0.004552	427.4	93.88	46.94
570	129	14.4780	9.55	0.004561	427.4	93.71	46.86
580	128	14.7320	9.72	0.004569	424.0	92.80	46.40
590	128	14.9860	9.89	0.004578	424.0	92.62	46.31
600	127	15.2400	10.05	0.004586	420.6	91.72	45.86
620	126	15.7480	10.39	0.004603	417.2	90.64	45.32
640	123	16.2560	10.72	0.004621	407.1	88.11	44.06
660	119	16.7640	11.06	0.004638	393.6676	84.88	42.44
680	114	17.2720	11.39	0.004656	376.8533	80.95	40.47
700	105	17.7800	11.73	0.004673	346.5609	74.16	37.08

www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Project No. 0115 004 00

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

 Test Hole
 TH13-04

 Sample #
 T08

 Depth (m)
 6.1 - 6.7

 Sample Date
 15-Nov-13

 Test Date
 21-Nov-13

 Technician
 HA

Tube Extraction

Recovery (mm) 450

Bottom - 6.7		6.1 m - Top
PP Tv Visual Moisture	Qu Y _{Bulk}	
120 mm	170 mm	160 mm

Visual Class	ification		Moisture Co	ntent	
Material	Clay		Tare ID		P10
Composition	Silty		Mass tare (g)		8.3
Trace silt inclus	sions (< 10mm dia.)		Mass wet + ta	re (g)	470.6
Trace gravel			Mass dry + tar	re (g)	304.4
		_	Moisture %	<u> </u>	56.1%
		-	Unit Weight		
			Bulk Weight (g		1152.10
Color	Dark grey				
Moisture	Moist		Length (mm)	1	150.91
Consistency	Firm			2	150.83
Plasticity	High plasticity			3	150.90
Structure	-			4	150.88
Gradation	+		Average Leng	th (m)	0.151
Torvane			Diam. (mm)	1	72.38
Reading		0.35	74.7 V. V.	2	71.83
Vane Size (s,n	n,l)	m		3	72.08
Undrained She	ear Strength (kPa)	34.3		4	72.63
			Average Diam	eter (m)	0.072
Pocket Pene	etrometer		2.		
Reading	1	0.70	Volume (m³)	_	6.18E-04
	2	0.75	Bulk Unit Weig	ght (kN/m³)	18.3
	3 0.70		Bulk Unit Weight (pcf)		116.3
	Average	0.72		Dry Unit Weight (kN/m³)	
Undrained Shear Strength (kPa) 35.1		Dry Unit Weight (pcf) 74			

kPa

ksf

1.9

0.9

Unconfined Strength

Project No. 0115 004 00

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

 Test Hole
 TH13-04

 Sample #
 T08

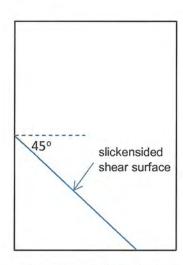
 Depth (m)
 6.1 - 6.7

 Sample Date
 15-Nov-13

Test Date 21-Nov-13 Technician HA

Specimen Data

Description Clay - Silty, Trace silt inclusions (< 10mm dia.), Trace gravel, Dark grey, Moist, Firm, High plasticity


Length	150.9	(mm)	Moisture %	56%	
Diameter	72.2	(mm)	Bulk Unit Wt.	18.3	(kN/m^3)
L/D Ratio	2.1		Dry Unit Wt.	11.7	(kN/m^3)
Initial Area	0.00410	(m ²)	Liquid Limit	-	
Load Rate	1.00	(%/min)	Plastic Limit	4.0	
			Plasticity Index	-	

Undrained Shear Strength Tests

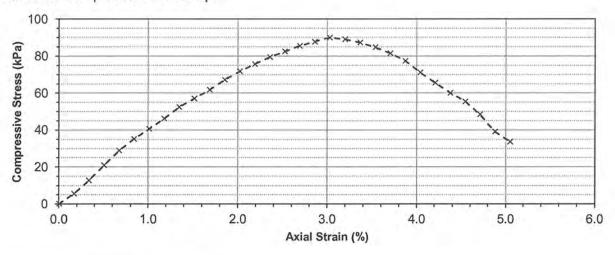
Torvane			Pocket Pene	etrometer		
Reading	Undrained SI	near Strength	Reading	Undrained S	hear Strength	
tsf	kPa	ksf	tsf	kPa	ksf	
0.35	34.3	0.72	0.70	34.3	0.72	
Vane Size			0.75	36.8	0.77	
m			0.70	34.3	0.72	
			0.72	35.2	0.73	

Failure Geometry

Sketch:

Photo:

Project No.


0115 004 00

Client

Associated Engineering

Project Detailed Design North Kildonan Feedermain

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m²)	Axial Load (N)	Compressive Stress, q _u (kPa)	
0	0	0.0000	0.00	0.004098	0.0	0.00	0.00
10	7	0.2540	0.17	0.004104	22.9	5.58	2.79
20	16	0.5080	0.34	0.004111	52.4	12.74	6.37
30	26	0.7620	0.51	0.004118	85.7	20.81	10.41
40	36	1.0160	0.67	0.004125	118.7	28.77	14.38
50	44	1.2700	0.84	0.004132	145.1	35.10	17.55
60	51	1.5240	1.01	0.004139	168.1	40.62	20.31
70	58	1.7780	1.18	0.004146	191.2	46.12	23.06
80	66	2.0320	1.35	0.004153	217.6	52.39	26.20
90	72	2.2860	1.52	0.004161	237.4	57.06	28.53
100	78	2.5400	1.68	0.004168	257.2	61.70	30.85
110	85	2.7940	1.85	0.004175	280.2	67.12	33.56
120	91	3.0480	2.02	0.004182	300.0	71.74	35.87
130	96	3.3020	2.19	0.004189	316.5	75.56	37.78
140	101	3.5560	2.36	0.004196	333.1	79.37	39.69
150	105	3.8100	2.53	0.004204	346.6	82.44	41.22
160	109	4.0640	2.69	0.004211	360.0	85.49	42.74
170	112	4.3180	2.86	0.004218	370.1	87.75	43.87
180	115	4.5720	3.03	0.004226	380.2	89.98	44.99
190	114	4.8260	3.20	0.004233	376.9	89.03	44.51
200	112	5.0800	3.37	0.004240	370.1	87.29	43.64
210	109	5.3340	3.54	0.004248	360.0	84.75	42.37
220	105	5.5880	3.70	0.004255	346.6	81.45	40.72
230	100	5.8420	3.87	0.004263	329.7	77.35	38.67

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Unconfined Compression Test Data (cont'd)

Elapsed Time (s)	Axial Disp. (mm)	Deflection (mm)	Axial Strain (%)	Corrected Area (m²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	92	6.0960	4.0403	0.004270	303.3	71.03	35.52
250	85	6.3500	4.21	0.004278	280.2	65.51	32.76
260	78	6.6040	4.38	0.004285	257.2	60.01	30.01
270	72	6.8580	4.55	0.004293	237.4	55.30	27.65
280	63	7.1120	4.71	0.004300	207.7	48.31	24.15
290	51	7.3660	4.88	0.004308	168.1	39.03	19.52
300	44	7.6200	5.05	0.004316	145.1	33.61	16.81

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

 Test Hole
 TH13-04

 Sample #
 T13

 Depth (m)
 9.1 - 9.8

 Sample Date
 15-Nov-13

 Test Date
 21-Nov-13

 Technician
 Hachem Ahmed

Tube Extraction

Recovery (mm) 450

Bottom - 9.8 m		9.1 m - Top
PP Tv Visual Moisture	Qu Y _{Bulk}	
110 mm	170 mm	190 mm

Visual Class	itication		Moisture Co	ntent	
Material	Clay		Tare ID	Tare ID	
Composition	Silty		Mass tare (g)		8.5
Trace silt inclus	sions		Mass wet + ta	re (g)	462.8
Trace gravel			Mass dry + tar	re (g)	351.3
			Moisture %	_	32.5%
			Unit Weight		
			Bulk Weight (g)	1196.70
Color	Dark grey			7	
Moisture	Moist		Length (mm)	1	152.25
Consistency	Firm			2	152.31
Plasticity	High plasticity			3	152.35
Structure	×			4	152.39
Gradation	4		Average Leng	th (m)	0.152
Torvane			Diam. (mm)	1	71.81
Reading		0.25		2	72.71
Vane Size (s,n	n,l)	m		3	72.43
Undrained Sho	ear Strength (kPa)	24.5		4	72.32
	4.00 (1.00 (Average Diam	eter (m)	0.072
Pocket Pene	etrometer				
Reading	1	0.60	Volume (m ³)	March 1985	6.26E-04
	2	0.50	Bulk Unit Weig		18.8
	3	0.80	Bulk Unit Weig	ght (pcf)	119.4
	Average	0.63	Dry Unit Weigl		14.2
Undrained She	ear Strength (kPa)	31.1	Dry Unit Weigl	ht (pcf)	90.1

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

 Test Hole
 TH13-04

 Sample #
 T13

 Depth (m)
 9.1 - 9.8

 Sample Date
 15-Nov-13

 Test Date
 21-Nov-13

Sample Date 15-Nov-13
Test Date 21-Nov-13
Technician Hachem Ahmed

Unconfined Strength					
	kPa	ksf			
Max qu	78.3	1.6			
Max S	39.1	0.8			

Specimen Data

Description Silty clay - trace silt inclusions, trace gravel, dark grey, moist, firm, high plasticity

 Length
 152.3 (mm)

 Diameter
 72.3 (mm)

 L/D Ratio
 2.1

 Initial Area
 0.00411 (m²)

 Load Rate
 1.00 (%/min)

 Moisture %
 33%

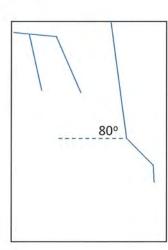
 Bulk Unit Wt.
 18.8 (kN/m³)

 Dry Unit Wt.
 14.2 (kN/m³)

 Liquid Limit

Plastic Limit Plasticity Index -

Undrained Shear Strength Tests

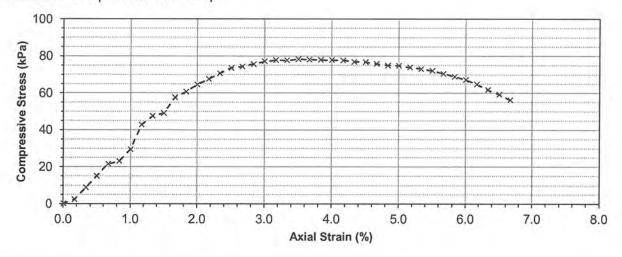

Torvane		
Reading	Undrained SI	hear Strength
tsf	kPa	ksf
0.25	24.5	0.51
Vane Size		
m		

Pocket Penetrometer

Reading		Undrained Shear Strength				
tsf		kPa	ksf			
(0.60	29.4	0.61			
(0.50	24.5	0.51			
(0.80	39.2	0.82			
(0.63	31.1	0.65			

Failure Geometry

Sketch:


Photo:

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004107	0.0	0.00	0.00
10	3	0.2540	0.17	0.004114	9.8	2.38	1.19
20	11	0.5080	0.33	0.004121	36.0	8.73	4.37
30	19	0.7620	0.50	0.004128	62.2	15.07	7.54
40	27	1.0160	0.67	0.004135	89.0	21.53	10.76
50	29	1.2700	0.83	0.004142	95.6	23.08	11.54
60	37	1.5240	1.00	0.004149	122.0	29.40	14.70
70	54	1.7780	1.17	0.004156	178.0	42.83	21.42
80	60	2.0320	1.33	0.004163	197.8	47.52	23.76
90	62	2.2860	1.50	0.004170	204.4	49.01	24.51
100	73	2.5400	1.67	0.004177	240.7	57.62	28.81
110	77	2.7940	1.83	0.004184	253.9	60.67	30.34
120	82	3.0480	2.00	0.004191	270.4	64.50	32.25
130	86	3.3020	2.17	0.004199	283.5	67.53	33.77
140	90	3.5560	2.33	0.004206	296.7	70.56	35.28
150	94	3.8100	2.50	0.004213	309.9	73.56	36.78
160	95	4.0640	2.67	0.004220	313.2	74.22	37.11
170	97	4.3180	2.83	0.004227	319.8	75.66	37.83
180	99	4.5720	3.00	0.004235	326.4	77.08	38.54
190	100	4.8260	3.17	0.004242	329.7	77.73	38.86
200	100	5.0800	3.33	0.004249	329.7	77.59	38.80
210	101	5.3340	3.50	0.004257	333.1	78.25	39.13
220	101	5.5880	3.67	0.004264	333.1	78.12	39.06
230	101	5.8420	3.84	0.004271	333.1	77.98	38.99

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Unconfined Compression Test Data (cont'd)

Elapsed Time (s)	Axial Disp. (mm)	Deflection (mm)	Axial Strain (%)	Corrected Area (m²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	101	6.0960	4.0020	0.004279	333.1	77.85	38.92
250	101	6.3500	4.17	0.004286	333.1	77.71	38.86
260	100	6.6040	4.34	0.004294	329.7	76.79	38.39
270	100	6.8580	4.50	0.004301	329.7	76.65	38.33
280	99	7.1120	4.67	0.004309	326.4	75.76	37.88
290	98	7.3660	4.84	0.004316	323.1	74.86	37.43
300	98	7.6200	5.00	0.004324	323.1	74.73	37.37
310	97	7.8740	5.17	0.004331	319.8	73.84	36.92
320	96	8.1280	5.34	0.004339	316.5	72.95	36.48
330	95	8.3820	5.50	0.004347	313.2	72.05	36.03
340	93	8.6360	5.67	0.004354	306.6	70.42	35.21
350	91	8.8900	5.84	0.004362	300.0	68.78	34.39
360	89	9.1440	6.00	0.004370	293.4	67.15	33.58
370	86	9.3980	6.17	0.004378	283.5	64.77	32.38
380	82	9.6520	6.34	0.004385	270.4	61.65	30.83
390	79	9.9060	6.50	0.004393	260.4	59.28	29.64
400	75	10.1600	6.67	0.004401	247.3	56.19	28.09

Appendix D
Unconfined Compressing Testing Results (bedrock cores)

TREK GEOTECHNICAL INC. 19-6104-3

LABORATORY TESTING RESULTS DECEMBER 2013

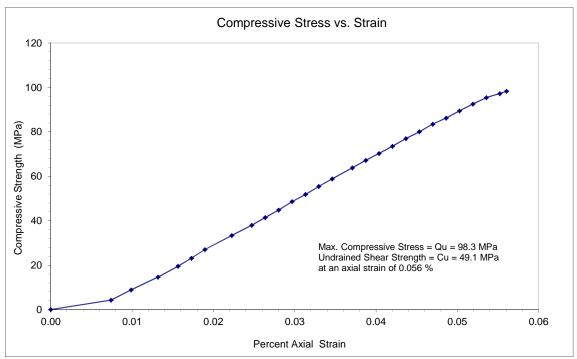
DRILL	SAMPLE	DE	DEPTH		COMPRESSIVE	
HOLE	#	FROM	то	STRENGTH		
NUMBER				Cu	Strain	
		(FT)	(FT)	(MPa)	(%)	
TH13-01	CB57	65' 4"	66'	49.1	0.056	Limestone
	CB64	99' 9"	100' 5"	31.2	0.042	Limestone
	CB65	101' 4"	102' 2"	21.8	0.045	Limestone
	CB67	114'	114' 11"	33.1	0.066	Limestone
TH13-05	CB72	62' 9"	63' 6"	39.5	0.048	Limestone
	CB74	71' 5"	72' 4"	39.5	0.081	Limestone
	CB79	97' 4"	98' 3"	11.9	0.037	Limestone

UNCONFINED COMPRESSION TEST REPORT

TREK GEOTECHNICAL INC REPORT DATE: Dec 4/13 FILE NUMBER: 19-6104-3 REPORT NUMBER: UC13-1c

Unconfined Compressive Strengths

TEST DATE: Dec 4/13


SAMPLE: TH13-01, CB57, @ 65'-4" to 66'

DESCRIPTION: Limestone, massive.

SPECIMEN DETAILS:

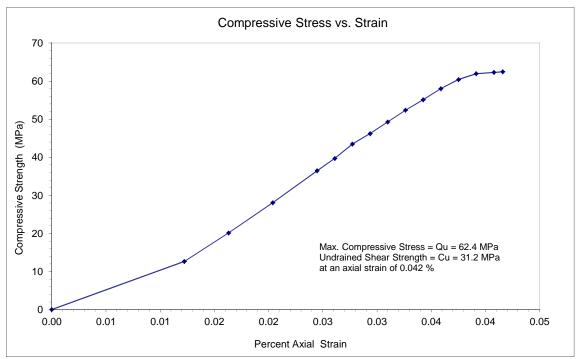
Wet Density (kg/m³): 2487 Dry Density (kg/m³): 2478 Moisture Content (%): 0.4

UNCONFINED COMPRESSION TEST REPORT

TREK GEOTECHNICAL INC REPORT DATE: Dec 4/13 FILE NUMBER: 19-6104-3 REPORT NUMBER: UC13-4c

Unconfined Compressive Strengths

TEST DATE: Dec 4/13


SAMPLE: TH13-01, CB64, @ 99'-9" to 100'-5"

DESCRIPTION: Limestone, nodular.

SPECIMEN DETAILS:

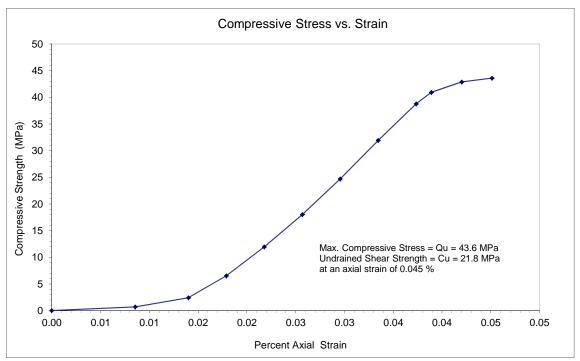
Wet Density (kg/m³): 2561 Dry Density (kg/m³): 2535 Moisture Content (%): 1.0

UNCONFINED COMPRESSION TEST REPORT

TREK GEOTECHNICAL INC REPORT DATE: Dec 4/13 FILE NUMBER: 19-6104-3 REPORT NUMBER: UC13-2c

Unconfined Compressive Strengths

TEST DATE: Dec 4/13


SAMPLE: TH13-01, CB65, @ 101'-4" to 102'-2"

DESCRIPTION: Limestone, nodular.

SPECIMEN DETAILS:

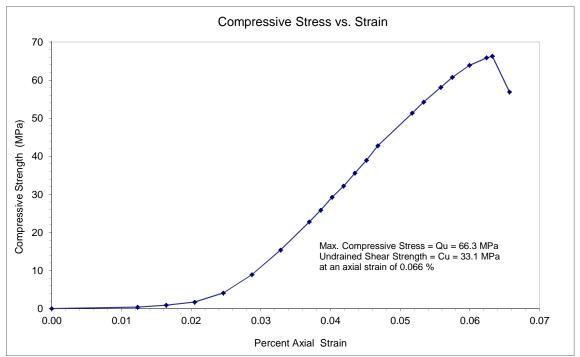
Wet Density (kg/m³): 2305 Dry Density (kg/m³): 2206 Moisture Content (%): 4.5

UNCONFINED COMPRESSION TEST REPORT

TREK GEOTECHNICAL INC REPORT DATE: Dec 4/13 FILE NUMBER: 19-6104-3 REPORT NUMBER: UC13-3c

Unconfined Compressive Strengths

TEST DATE: Dec 4/13


SAMPLE: TH13-01, CB67, @ 114' to 114'-11"

DESCRIPTION: Limestone, nodular.

SPECIMEN DETAILS:

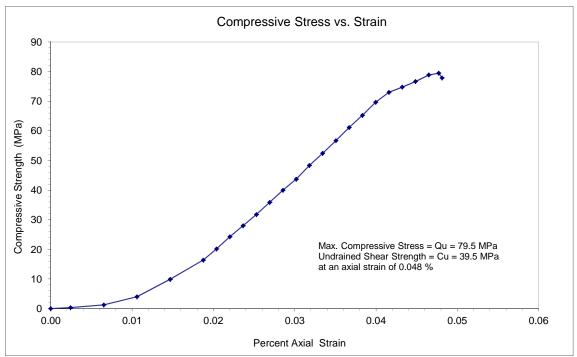
Wet Density (kg/m³): 2547 Dry Density (kg/m³): 2502 Moisture Content (%): 1.8

UNCONFINED COMPRESSION TEST REPORT

TREK GEOTECHNICAL INC REPORT DATE: Dec 4/13 FILE NUMBER: 19-6104-3 REPORT NUMBER: UC13-5c

Unconfined Compressive Strengths

TEST DATE: Dec 4/13


SAMPLE: TH13-05, CB72, @ 62'-9" to 63'-6"

DESCRIPTION: Limestone, massive.

SPECIMEN DETAILS:

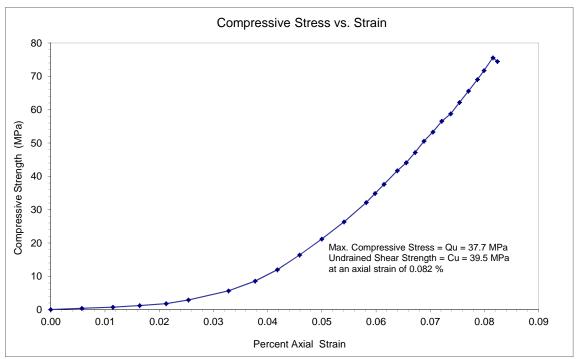
Wet Density (kg/m³): 2647 Dry Density (kg/m³): 2633 Moisture Content (%): 0.6

UNCONFINED COMPRESSION TEST REPORT

TREK GEOTECHNICAL INC REPORT DATE: Dec 4/13 FILE NUMBER: 19-6104-3 REPORT NUMBER: UC13-6c

Unconfined Compressive Strengths

TEST DATE: Dec 4/13


SAMPLE: TH13-05, CB74, @ 71'-5" to 72'-4"

DESCRIPTION: Limestone, massive.

SPECIMEN DETAILS:

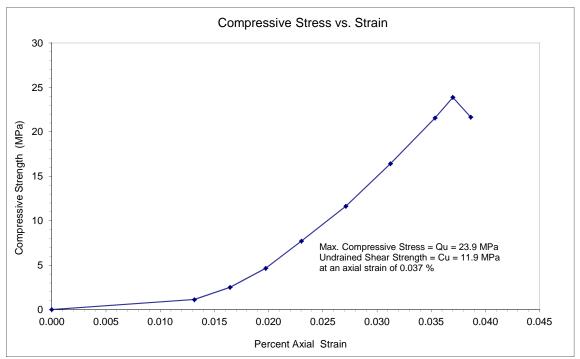
Wet Density (kg/m³): 2534 Dry Density (kg/m³): 2496 Moisture Content (%): 1.5

UNCONFINED COMPRESSION TEST REPORT

TREK GEOTECHNICAL INC REPORT DATE: Dec 4/13 FILE NUMBER: 19-6104-3 REPORT NUMBER: UC13-7c

Unconfined Compressive Strengths

TEST DATE: Dec 4/13


SAMPLE: TH13-05, CB79, @ 97'-4" to 98'-3"

DESCRIPTION: Limestone, nodular.

SPECIMEN DETAILS:

Wet Density (kg/m³): 2388
Dry Density (kg/m³): 2256
Moisture Content (%): 5.8

