

Slope Stabilization of Stormwater Retention Basin (SRB) 6-7 Geotechnical Investigation and Stability Assessment

Prepared for:

Andrew Ziegler, P. Eng. Project Engineer - Land Drainage and Flood Protection Branch City of Winnipeg 1199 Pacific Avenue Winnipeg, Manitoba R3E 3S8

Project Number: 0015 035 00

Date: April 6, 2021

Revision History

Revision No.	Project Engineer	Issue Date	Description				
0	RB	October 22, 2020	Preliminary Design Report				
1	RB	December 23, 2020	Revised Preliminary Design Report				
2	RB	April 6, 2021	Revised Preliminary Design Report				

Authorization Signatures

Ryan Belbas, M. Sc., P. Eng. Geotechnical Engineer **Reviewed By:**

Ken Skaftfeld, M. Sc., P. Eng. Senior Geotechnical Engineer

Table of Contents

Letter of	of Tran	nsmittal	
Revisio	on Hist	ory and Authorization Signatures	
1.0	Introd	luction	1
2.0	Backg	round	1
3.0	Field	Program	1
	3.1	Site Conditions	1
	3.2	Site Survey	2
	3.3	Sub-surface Investigation	2
4.0	Slope	Stability Analysis	3
	4.1	Numerical Analysis	3
	4.2	Stabilization Alternatives	5
5.0		Estimate	
6.0	Closu	re	7

Figures

Test Hole Log Appendices

List of Tables

City of Winnipeg

Table 01	Soil Properties used in Stability Modeling	4
Table 02	Slope Stability Analysis Results	5
Table 03	Class 'C' Cost Estimate – Rockfill Ribs	6

List of Figures

Figure 01	Existing Site Conditions – Site Plan
Figure 02	Existing Site Conditions - Cross-section A
Figure 03	Proposed Stabilization – Plan and Profile

List of Appendices

Appendix A	Site Photographs
Appendix B	Laboratory Testing Results
Appendix C	Slope Inclinometer Monitoring Results
Appendix D	Slope Stability Analysis Results

April 6, 2021

Our File No. 0015 035 00

Andrew Ziegler, P. Eng. Project Engineer, Land Drainage and Flood Protection Branch City of Winnipeg 1199 Pacific Avenue Winnipeg, Manitoba R3E 3S8

RE: Slope Stabilization of Stormwater Retention Basin (SRB) 6-7 Geotechnical Investigation and Stability Assessment

TREK Geotechnical Inc. is pleased to submit a revised preliminary design report for the geotechnical investigation and slope stability assessment for the above noted project. Changes to this report have been made in response to a request by Andrew Ziegler, P.Eng. of the City of Winnipeg, in an email dated February 24, 2021. The changes include an updated cost estimate that incorporates the cost to reconstruct the segment of the pedestrian pathway that lies along the extents of the stabilization works.

Please contact the undersigned should you have any questions.

Sincerely,

TREK Geotechnical Inc. Per:

Rellas

Ryan Belbas, M.Sc., P. Eng. Geotechnical Engineer

Encl.

I.0 Introduction

This report summarizes the results of the geotechnical investigation performed by TREK Geotechnical Inc. (TREK) to address a slope instability that occurred along a segment of Stormwater Retention Basin 6-7 (SRB 6-7) in the Winnipeg neighborhood of Waverley Heights. The terms of reference for the work are included in our proposal to Mr. Andrew Ziegler, P.Eng. of the City of Winnipeg Land Drainage and Flood Protection Branch (the City) dated February 26, 2020. The scope of work for this assignment includes a visual assessment of the existing site conditions, a sub-surface investigation, a topographic survey, instrumentation monitoring, a slope stability analysis and the provision of preliminary design recommendations for slope stabilization and an associated Class 3 construction cost estimate.

2.0 Background

A slope instability was observed by the City along a segment of the east bank of SRB 6-7 during the week of October 14, 2019. The instability extended along the bank adjacent to and downslope of the pedestrian path between the properties of 94 and 106 Syracuse Crescent. The instability occurred after an exceptionally wet fall with a total precipitation of approximately 170 mm in September and early October. Winnipeg also experienced an unprecedented storm on October 10 and 11 with over 35 cm of snow, sleet and rain. The SRB water level at the time of failure is estimated to have been at about EL. 229.3 m which is approximately 0.8 m lower than the 25-year design level of 230.124 m.

3.0 Field Program

3.1 Site Conditions

A site reconnaissance was completed by TREK on January 11 and July 31, 2020 during the sub-surface investigation. The east bank is approximately 4 m high (relative to the basin floor) with an overall slope angle of about 5.5H:1V (Horizontal:Vertical). A plan view of the failure area is shown in Figure 01. The failure is approximately 55 m long defined by discontinuous head scarps up to 0.5 m high near its centre. Numerous smaller intermediate scarps on the bank downslope of the head scarp are visible but there was no visual evidence of a toe bulge above the water line. Photo 01 shows the slope failure and additional site photos are attached in Appendix A.

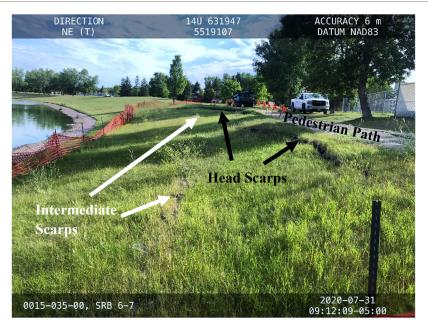


Photo 01. Looking northeast at the instability

3.2 Site Survey

A topographic survey was performed on July 31, 2020 by Wanless Geo-Point Solutions Inc. Site features and elevation contours generated from the survey are shown on Figure 01 and a cross-section (Cross-Section A) through the zone of instability is shown on Figure 02.

3.3 Sub-surface Investigation

A sub-surface investigation was performed on July 31, 2020 under the supervision of TREK personnel to determine the soil stratigraphy and groundwater conditions at the site. Test hole (TH) 20-01 was drilled to 12.2 m below ground surface at the location shown on Figure 01 using a track-mounted geotechnical rig equipped with 125 mm diameter solid stem augers. Inclinometer casing was installed in the test hole to facilitate slope movement monitoring. The casing terminates at ground surface where a flush-mount protective casing was installed.

Sub-surface soils observed during drilling were visually classified based on the Unified Soil Classification System (USCS). Samples retrieved during drilling included disturbed auger cutting samples and relatively undisturbed Shelby tube samples. All samples retrieved during drilling were transported to TREK's testing laboratory in Winnipeg, Manitoba. Laboratory testing consisted of moisture content measurements on all samples. Bulk unit weight measurements, Atterberg limits, grain-size analysis, and unconfined compression testing was also completed on select Shelby tube samples. Laboratory testing results are included in Appendix B.

3.3.1 Soil Stratigraphy and Groundwater Conditions

A brief description of the soil stratigraphy and groundwater conditions encountered during drilling is provided in the following sections. Interpretations of this information for the purposes of design should refer to the detailed information provided on the attached test hole log. The soil stratigraphy consists of

0.3 m of organic clay topsoil overlying silty clay. The silty clay is moist, of high plasticity and stiff becoming firm with depth. The clay is weathered with a blocky structure within 3.5 m of ground surface. Soft zones were encountered between 2.6 and 3.4 m and between 7 and 9 m. Squeezing of the test hole occurred within the upper soft zone.

3.3.2 Groundwater Conditions

Groundwater seepage was not observed during drilling, however, observations made during drilling are short-term and should not be considered reflective of (static) groundwater levels at the site which would require monitoring over an extended period to determine. It is important to recognize that groundwater conditions may vary seasonally, annually, or as a result of construction activities.

3.3.3 Slope Movement Monitoring

The slope inclinometer was monitored twice after installation, with the most recent monitoring event on September 16, 2020. No measurable slope movements are evident in the results to date (Appendix C).

4.0 Slope Stability Analysis

4.1 Numerical Analysis

A slope stability analysis was carried out to evaluate the existing instability and identify appropriate stabilization measures. The analyses were performed under assumed short and long-term groundwater levels (GWLs) with respective target factors of safety (FS) of 1.3 and 1.5.

4.1.1 <u>Numerical Model Description</u>

The stability analysis was conducted using a limit-equilibrium slope stability model (Slope/W) from the GeoStudio 2016 software package (Geo-Slope International Ltd.). The slope stability model used the Morgenstern-Price method of slices with the half-sine inter-slice force function to calculate factors of safety, and slip surfaces were identified using a grid and radius slip surface method. A static piezometric line was used to represent GWLs and SRB water levels. Cross-section A was used for the stability analysis.

4.1.2 Failure Mechanism

Preliminary analysis indicated that the failure is relatively shallow and likely confined to the upper portion of the slope (within the upper 4 m). Within this zone, low operating shear strengths can be expected. A sensitivity analysis carried out using two groundwater levels (GWLs) and soil strengths showed that it is plausible that soil cohesion within this zone may have reduced to 0 kPa at the time of failure, likely under a near-saturated bank condition after significant rainfall events in September and October of 2019. As background, weathering is known to occur within about 3 m of ground surface in Winnipeg clays due to climatic cycles of freeze-thaw and wetting-drying resulting in the formation of structural discontinuities (i.e. cracks and fissures) which alter the intact soil structure. These

discontinuities may lead to a loss of effective cohesion over time and thus a reduction in the overall shear strength of clay deposits under low normal stress (i.e. clay within the shallow zone of weathering). This phenomenon is common with cut slopes in clay soils (Kjartanson, 1978). Cracks and fissures also increase the permeability of the clay and promote infiltration of surface run-off and precipitation which can lead to the development of critical groundwater conditions. Groundwater infiltration can also increase the water content of the clay within this zone and create a fully softened (normally consolidated) state. It is unknown if discharge of pool water from the adjacent properties contributed to the problem.

4.1.3 <u>Soil Properties</u>

The strength properties assigned to the underlying silty clay are considered typical for Winnipeg clays along slopes which have experienced large strains (i.e. fully softened). Table 01 summarizes the soil units (including construction materials) and strength properties used in the analysis which are based on the stratigraphy encountered during drilling, our experience, and the results of the back analysis described in Section 4.1.5. The unit weight and friction angle assigned to the composite soil are based on an average of the weathered clay and 100 mm down crushed limestone.

Soil Description	Unit Weight (kN/m ³)	Cohesion (kPa)	Friction Angle (degrees)
Weathered Clay	17.3	0	17.0 ¹
Clay	17.3	5.0	17.0
Composite Soil (Rockfill Ribs and Clay)	19.0 ²	0	31.0 ²

Table 01. Soil Properties used in Stability Modeling

¹ Derived from Back Analysis

² 1:1 ratio of granular fill and weathered clay

4.1.4 Groundwater and SRB Water Levels

A GWL within the upper bank, at approximately Elev. 230.5 m, was used to represent the normal (long-term) condition and a GWL at approximately Elev. 232.0 m was used to represent the high (short-term) GWL associated with a near-saturated condition. The normal GWL is assumed to transition from the top of the bank to a basin water elevation of 228.9 m. The GWL for the short-term condition was assumed to be at a higher elevation near the ground surface to a basin water elevation of 229.3 m

4.1.5 <u>Back-Analysis</u>

A back-analysis was completed to determine probable soil strengths and groundwater conditions at the time of failure. The following applied conditions/criteria:

- Near-saturated bank at the time of failure,
- Shallow slip (failure) surface within the upper 4 m,

- Entry point of slip surface coincides with the observed head scarps, and
- $FS \sim 1.0$ for the critical slip surface.

The computer output D-1 (Appendix D) shows the critical slip surface which extends to approximately 2 m below ground surface, exiting approximately 20 m downslope of the head scarps.

4.2 Stabilization Alternatives

A preliminary assessment of feasible stabilization measures included a shear key, a retaining wall with slope regrading (unloading), and rockfill ribs. A rockfill shear key at the mid to lower slope was ruled out because of potential continued movement upslope of the works and the potential for significant slope movements during construction. The retaining wall was also ruled out considering the significant construction costs associated with reconstruction (or relocation) of a portion of the pathway, guard rail, and significant alteration to bank geometry. Granular ribs were deemed the most appropriate stabilization measure in terms of cost, ease of construction, and limited disturbance/alteration to the existing greenspace.

Rockfill ribs are trenches excavated perpendicular to the slope at a regular spacing and backfilled with compacted granular fill. They provide mechanical stabilization of the lower, mid and upper bank areas and prevent potential re-saturation of the bank through internal drainage, lowering of the GWL within the stabilization zone. In this regard, ribs were numerically analyzed to determine the geometry required to achieve the design objective.

The soil mass within the stabilized zone was analyzed as a composite material consisting of a 1:1 ratio of 100 mm down crushed limestone to weathered clay with the strength properties indicated in Table 01. Various rib geometries were analyzed to determine a configuration meeting the design targets, as shown in the computer outputs D-2 and D-3 in Appendix D. The results of the stability analysis are summarized in Table 02. The recommended rib configuration is shown in Figure 03 and consists of 1.5 m wide ribs, with 1.5 m clear spacing between the ribs, excavated from the outside edge of the head scarp to about EL. 229.4 m and graded at 3% to EL. 229.0 m at the toe of the ribs about 15 m downslope. The 1.5 m spacing is considered necessary to achieve the desired groundwater drawdown effect between ribs and increased shear strength.

Stability Case	GWL and SRB Water Level	Slip Surface	Target FS	Calculated FS	Figure No. (Appendix D)
Back Analysis	Short-Term	Representative of Actual Conditions	1.0	0.99	D-1
	Short-Term	Global	1.3	1.72	D-2
Dool/fill Dibo	Short-renn	Critical	1.5	1.37	D-2
Rockfill Ribs	Long-Term	Global	1.71		D-3
	Long-Term	Critical	1.5	1.49	<u>с-л</u>

5.0 Cost Estimate

A Class C cost estimate (-20% to +30%) of the proposed rockfill ribs based on unit costs for similar stabilization projects is provided in Table 03. As requested by the City, the estimated cost to reconstruct the pedestrian pathway along the extent of the stabilization works is included in the cost estimate.

Item Description	Unit	Estimated Quantity	Unit Price	Estimated Cost
Mobilization and Demobilization	Lump Sum	1	\$25,000.00	\$25,000.00
Site Access and Development	Lump Sum	1	\$10,000.00	\$10,000.00
Supply and Placement of Granular Fill	tonnes	100	\$90.00	\$9,000.00
Supply, Placement, and Compaction of Rockfill	tonnes	650	\$80.00	\$52,000.00
Supply and Placement of Geotextile	m ²	110	\$10.00	\$1,100.00
Supply and Placement of Field Stone	tonnes	90	\$35.00	\$3,150.00
Removal and Disposal of Existing Asphaltic Concrete Pavement and Granular Base Course	m²	130	\$50.00	\$6,500.00
Supply, Placement and Compaction of Granular Base Course	m ³	50	\$65.00	\$3,250.00
Construction of Asphaltic Concrete Pavement	tonnes	15	\$190.00	\$2,850.00
Grading and Supply and Placement of Topsoil and Seed	m²	700	\$20.00	\$14,000.00
Supply and Placement of Erosion Control Blanket	m²	700	\$7.00	\$4,900.00
Engineering Support During Construction	Time and Materials			\$16,000
SUB-TO	TAL			\$131,750
Continge (-20% to +	-\$26,350 to +\$39,525			
ΤΟΤΑ	L			\$105,400 to \$171,275

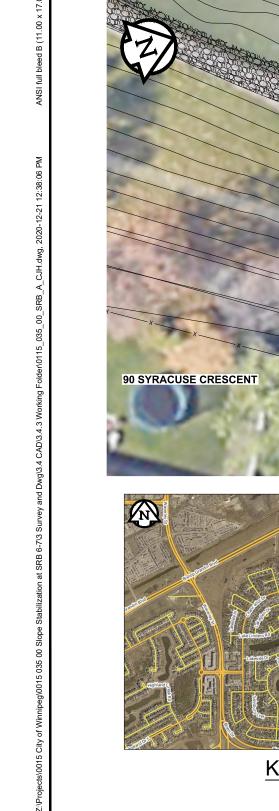
Table 03. Class 'C' Cost Estimate – Rockfill Ribs and Pedestrian Pathway Reconstruction

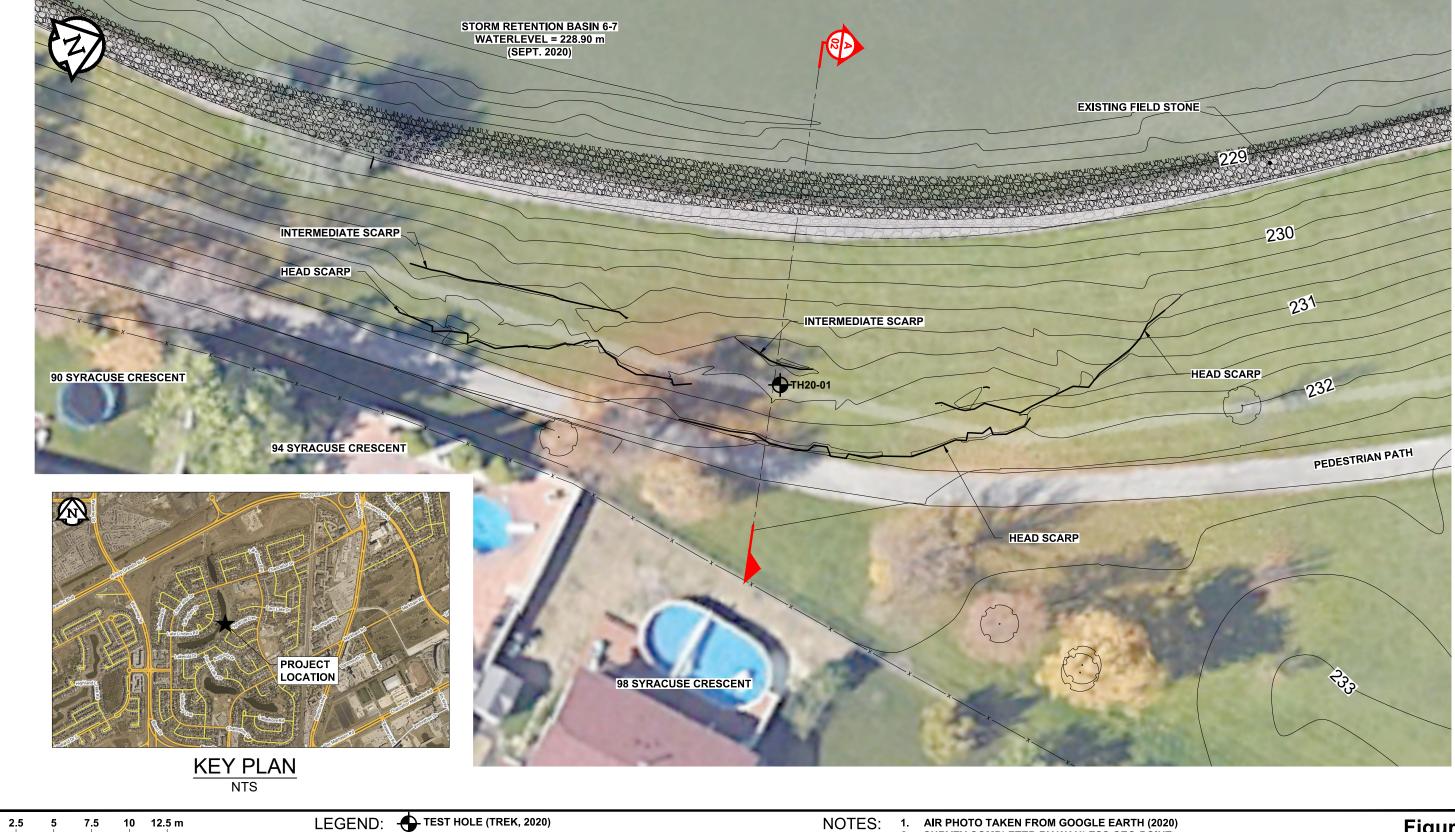
We have included estimated allowances for engineering support during construction and postconstruction services; however, these should be confirmed based on an engineering services proposal for the scope of the subsequent assignments. We have not included any contingencies, however, we can assist the City in developing appropriate contingencies, if required.

The cost estimate is for the construction of eighteen granular ribs and reconstruction of the pedestrian pathway within the segment of the stabilization works. If funding is available, the City may wish to consider adding ribs to the south end of the works where the slope steepens to reduce the likelihood of future extensions of the failure area. The estimated unit cost per additional rib is \$5,000 to \$6,000 assuming they are constructed as part of the stabilization works. A Tender could be written to include additional rib construction in the schedule of prices but left as incremental work to be carried out at the discretion of the Owner (Scope Change).

6.0 Closure

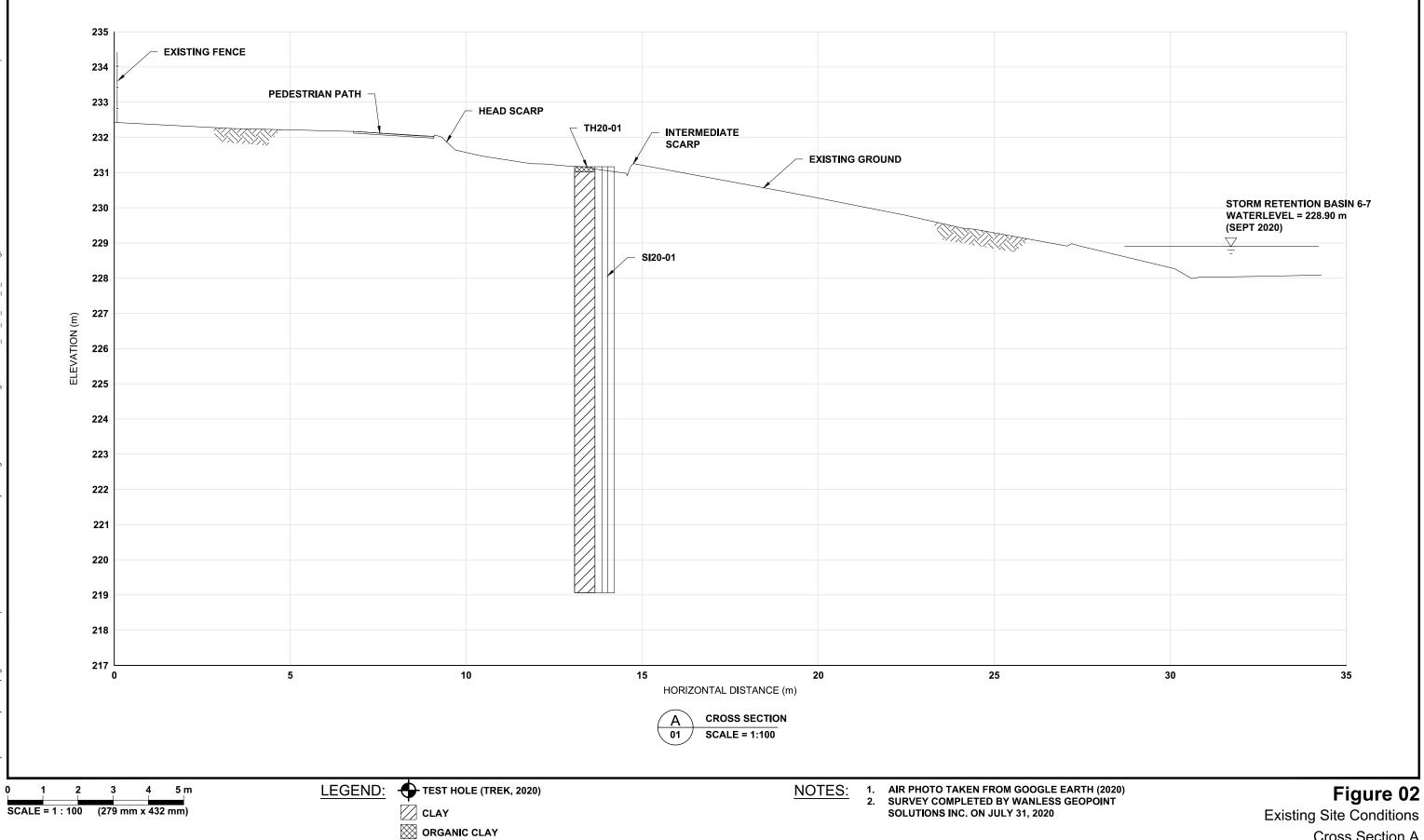
The geotechnical information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation and laboratory testing). Soil conditions are natural deposits that can be highly variable across a site. If sub-surface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.


All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work or standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.


This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of the City of Winnipeg (the Client) and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.

Figures

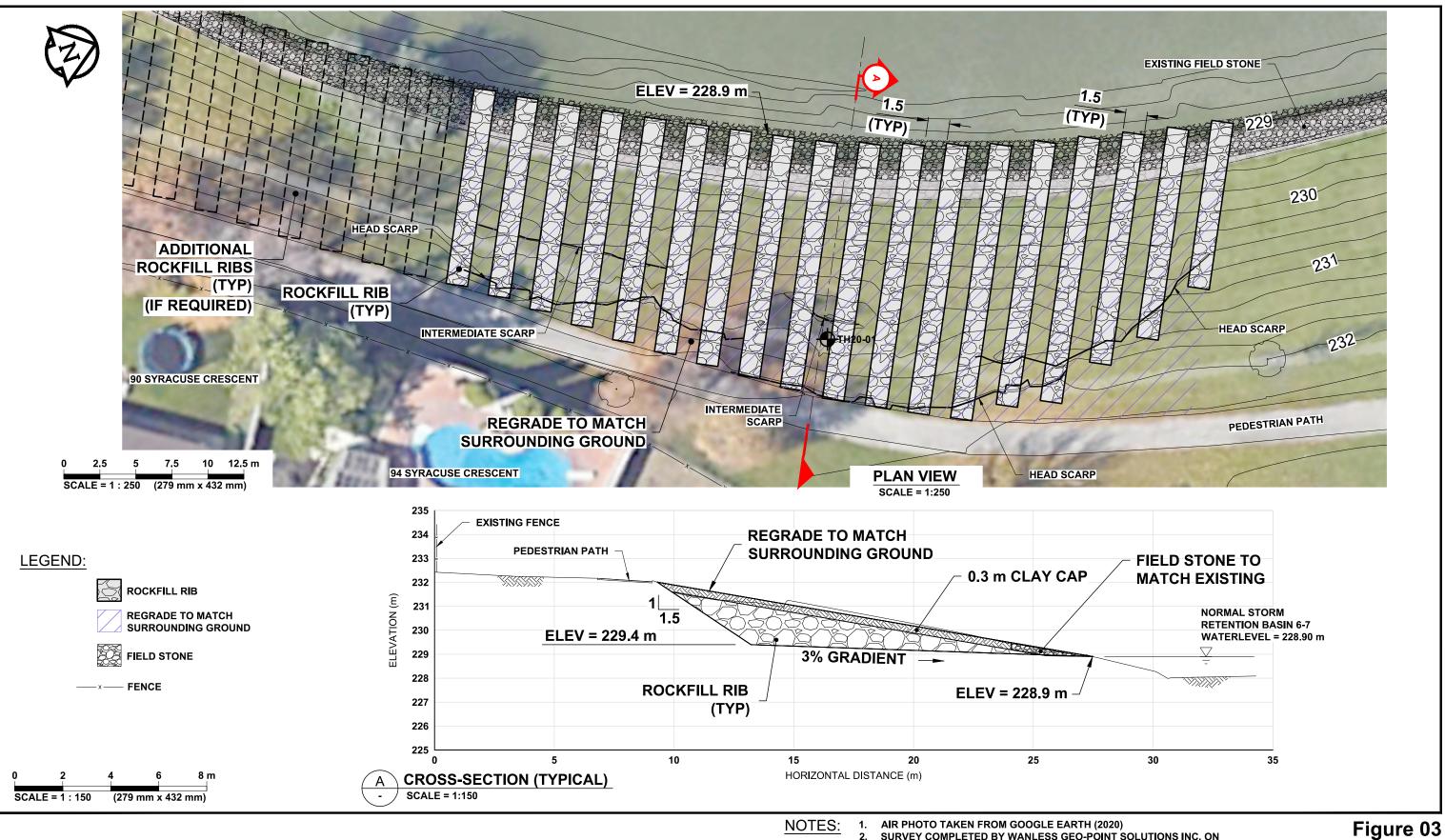
0


(·) TREE

AIR PHOTO TAKEN FROM GOOGLE EARTH (2020) SURVEY COMPLETED BY WANLESS GEO-POINT SOLUTIONS INC. ON JULY 31, 2020 2. 3. CONTOURS AT 0.25 m INTERVALS

0015 035 00 City of Winnipeg Slope Stabilization of SRB6-7

Figure 01 Existing Site Conditions Site Plan



0015 035 00

City of Winnipeg Slope Stabilization of SRB6-7

Cross Section A

- - 2. JULY 31, 2020
 - 3. CONTOURS AT 0.25 m INTERVALS

0015 035 00 City of Winnipeg Slope Stabilization of SRB6-7

SURVEY COMPLETED BY WANLESS GEO-POINT SOLUTIONS INC. ON

Proposed Stabilization Plan and Profile

Test Hole Logs

EXPLANATION OF FIELD AND LABORATORY TESTING

GENERAL NOTES

GEOT

1. Classifications are based on the United Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.

2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.

3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

Ma	ajor Div	isions	USCS Classi- fication	Symbols	Typical Names		Laboratory Classification Criteria				ş				
	raction	gravel no fines)	GW		Well-graded gravels, gravel-sand mixtures, little or no fines		$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	^{n 4;} C _c = <u> </u>	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		ieve sizes	#10 to #4	#40 to #10	#200 to #40 / #200	< #200
sieve size)	Gravels than half of coarse fraction alarder than 4.75 mm)	Clean (Little or	GP		Poorly-graded gravels, gravel-sand mixtures, little or no fines	grain size curve, er than No. 200 sieve) ng dual symbols*	Not meeting all gradatio	on requiren	nents for GW	ە	ASTM Sieve	#10	#401	#500	¥
ained soils larger than No. 200 sieve	Gra than half o	Gravel with fines (Appreciable amount of fines)	GM		Silty gravels, gravel-sand-silt mixtures	r than No. g dual syn	Atterberg limits below "A line or P.I. less than 4	'A"	Above "A" line with P.I. between 4 and 7 are border-	Particle Size	٩			+	
ained soils larger than	lore	Gravel w (Appre amount	GC		Clayey gravels, gravel-sand-silt mixtures	niri o nalla	Atterberg limits above "A line or P.I. greater than 7	'A"	line cases requiring use of dual symbols	Par		Ľ	, g	25	
Coarse-Grained (More than half the material is larger	e fraction mm)	sands no fines)	SW	*****	Well-graded sands, gravelly sands, little or no fines	Determine percentages of sand and gravel from grain size curve. depending on percentage of fines (fraction smaller than No. 200 s coarse-grained soils are classified as follows: Less than 5 percent GW, GP, SW, SP Less than 12 percent GW, GC, SM, SC 6 to 12 percent Borderline case4s requiring dual symbols*	$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	^{n 6;} C _c =	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		шш	2 00 to 4 75	0.425 to 2.00	0.075 to 0.425	c/0.0 >
n half the r	Sands alf of coarse fi r than 4 75 mi		SP		Poorly-graded sands, gravelly sands, little or no fines	ages of sa entage of 1 s are class cent srcent	Not meeting all gradatio	on requiren	nents for SW				. 0	0	
(More thai	Sands than half of coarse smaller than 4 75 n	Sands with fines (Appreciable amount of fines)	SM		Silty sands, sand-silt mixtures	lemine percentages of s, pending on percentage of arse-grained solls are cla: arse than 5 percent More than 12 percent 6 to 12 percent Bord	Atterberg limits below "A line or P.I. less than 4	'A"	Above "A" line with P.I. between 4 and 7 are border-	lai	5				Clay
	(More t	Sands w (Appre amount	SC		Clayey sands, sand-clay mixtures	Determir dependir coarse-g Less More 6 to 1	Atterberg limits above "A line or P.I. greater than 7	'A" 7	line cases requiring use of dual symbols	Material	ואומר	Sand	Medium	Fine Silt or	SIIT OF CIAY
e size)	, As		ML		Inorganic silts and very fine sands, rock floor, silty or clayey fine sands or clayey silts with slight plasticity	80 Plasticity	Plasticity chart for solid fraction with particles an 0.425 mm	/ Chart	r LINE		e Sizes		-	i i i	
Fine-Grained soils (More than half the material is smaller than No. 200 sieve size)	Silts and Cla	(Liquid limit less than 50)	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	70 - 60 -	an 0.425 mm		,U LI . A LINE	e	S	> 12 in. 3 in to 12 in	2	3/4 in. to 3 in. #4 to 3/4 in	15 2 14
soils er than No	Si		OL	==	Organic silts and organic silty clays of low plasticity	- 00 (%)		CH CH		Particle Size	ASTM:	+	_		_
e-Grained al is small	ski	t 50)	MH		Inorganic silts, micaceous or distomaceous fine sandy or silty soils, organic silts	- 1 40 - L 40 - L 40 - S30 -				Pa	mm	> 300 75 to 300	222	19 to 75 4 75 to 19	P 10
Fine the materi	ts and Cla	(Liquid limit greater than 50)	СН		Inorganic clays of high plasticity, fat clays	20-			MH OR OH		L	75 1	· ·	191 4 75) F
than half	N		OH		Organic clays of medium to high plasticity, organic silts		ML or OL 16 20 30 40 50 LIQUID LI	60 70 _IMIT (%)	80 90 100 110		5	ers	3_		-
(More	Highly	Organic Soils	Pt	<u>6 76 76</u> <u>70 77 7</u>	Peat and other highly organic soils	Von Post Class			lour or odour, fibrous texture	Material	ואומוכ	Boulders	Gravel	Coarse Fine	

Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

Other Symbol Types

Asphalt	Bedrock (undifferentiated)	63	Cobbles
Concrete	Limestone Bedrock		Boulders and Cobbles
Fill	Cemented Shale		Silt Till
	Non-Cemented Shale		Clay Till

EXPLANATION OF FIELD AND LABORATORY TESTING

LEGEND OF ABBREVIATIONS AND SYMBOLS

- LL Liquid Limit (%)
- PL Plastic Limit (%)
- PI Plasticity Index (%)
- MC Moisture Content (%)
- SPT Standard Penetration Test
- RQD- Rock Quality Designation
- Qu Unconfined Compression
- Su Undrained Shear Strength
- VW Vibrating Wire Piezometer
- SI Slope Inclinometer

- ☑ Water Level at Time of Drilling
- ▼ Water Level at End of Drilling
- ☑ Water Level After Drilling as Indicated on Test Hole Logs

FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

TERM	EXAMPLES	PERCENTAGE
and	and CLAY	35 to 50 percent
"y" or "ey"	clayey, silty	20 to 35 percent
some	some silt	10 to 20 percent
trace	trace gravel	1 to 10 percent

TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

<u>Descriptive Terms</u>	<u>SPT (N) (Blows/300 mm)</u>					
Very loose	< 4					
Loose	4 to 10					
Compact	10 to 30					
Dense	30 to 50					
Very dense	> 50					
The Standard Penetration Test blow count (N) of a cohesive soil can be related to its consistency as follows:						

Descriptive TermsSPT (N) (Blows/300 mm)Very soft< 2</td>Soft2 to 4Firm4 to 8Stiff8 to 15Very stiff15 to 30Hard> 30

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	Undrained Shear <u>Strength (kPa)</u>
Very soft	< 12
Soft	12 to 25
Firm	25 to 50
Stiff	50 to 100
Very stiff	100 to 200
Hard	> 200

Sub-Surface Log

1 of 1

				ILHL													
Clie				innipeg					Project Number:								
-	Project Name: Slope Stabilization at SRB 6-7					UTM N-5519133.943, E-631966.084											
	tractor:			af Drilling L					Ground Elevation:								
Met	hod:		mm So	olid Stem Aug	er, Acker MP5	- I Track Mo	_				ıly 2020			-			
	Sample	e Type:			Grab (G)		She	Iby Tube (T)	Split Spoon (SS	5)	Spli	t Barrel (_	Cor	e (C)		
	Particle	e Size Le	egeno	1:	Fines	c 🏹	ay	Silt	Sand Sand		Grave	a 67		bles	В	oulder	S
	Backfil	Legend	1:		Bentonite		Cement	t 📈		Filter P Sand	ack		Grout		Slo	ough	
		_	ŗ							e	ber		ulk Unit W kN/m³) 8 19	t 20 21 -		rained ength (
, tion) pth	Soil Symbol	Slope Inclinometer							Sample Type	Number		le Size (%	_		<u>Fest Ty</u> Torvan	
Elevation	(m) (m)	oil Sy	Siol Slinot			MATE	RIAL DE	SCRIPTION		mple		20 4	0 60	80 100	• Pe	ocket P	en. 🗖
		Š	<u>n</u>							Sal	Sample 1	PL 20 4	MC L	.L 1 80 100 0	OF	ield Va	
230.	9	<u>x1 / </u>		ORGANIC	CLAY - silty	/, trace silt	inclusion	ns (diam. < 2	0 mm), trace gravel (dia	m. 🖊	G01	•	0 00	00 100 0	23		2 0
	- tr				blackish gre				e gravel (diam. < 5 mm		_G02	•					•
	-1-			- brow	/nish grey st. stiff	1003013		10 mm), <u>arac</u>			G03		•				
				- high	plasticity						003					-	
	- 2 -				thered and b n, firm below		.4 m				T04	I	•			Q	
				0													
				- soft below	v 2.6 m.						G05		•		• ^		
0/20				- firm belov	v 2.4 m						G06		•		¢۵		
22/10/20					v 3.4 m.												
GDT				4				·····)					_				
0015-035-00.GPJ TREK GEOTECHNICAL.GDT				- trace suip	nate precipi	tates (diar	n. < 10 m	nm) at 4.3 m			G07		•		•	4	
ECHI	5										_		_		_		
GEOT											_G08		•				
REK	6												////				
L L T											Т09						
00.0	- 7 -			- trace sulp	hate precipi	tates (diar	n. < 20 m	nm) at 6.9 m.			_						
5-03											G10		•		• △		
	- 8 -			- grey below	<i>w</i> 7.8 m.						G11				•		
A_JSB				- trace silt i	nclusions (c	liam. < 30	mm) belo	ow 8.2 m.									
B 6-7				- trace grav	/el (diam. <	30 mm) at	8.8 m										
LT SR				liuoo giuv			0.0 111.				T12						
7 NOI													•				
LIZAT	-10-																
TABI											G13		•		Δ		
OPES	-11-																
e sro											_						
219.	0-12-										G14		•		Δ		
SUB-SURFACE LOG LOGS 2020-10-16 SLOPE STABILIZATION AT SRB 6-7				Notes:	EST HOLE		IN CLAY	<i>(</i> .									
LOG					age observe		m.										
LOG				3) Test hole	e open to 2.	6 m below	ground s	surface imme 2 m denth be	ediately after drilling. low ground surface.								
=ACE				5) Test hole	e location pr	ovided by	Wanless	Geo-Point S	colutions Inc.								
SURF																	
B Log	ged By:	Jasha	ndee	p Singh Bhu	ullar	Rev	ewed By	: Ken Ska	ftfeld	_ I	Project	Enginee	er: <u>Rya</u>	n Belba	S		

Looking northeast at the instability from toe of bank

Looking northeast at the instability from top of bank

Looking southwest at the instability from top of bank after completion of drilling

Appendix B

Laboratory Testing Results

Project No.	0015-035-00
Client	City of Winnipeg
Project	Slope Stabilization at SRB 6-7
Sample Date	31-Jul-20
Test Date	04-Aug-20

BMH

Technician

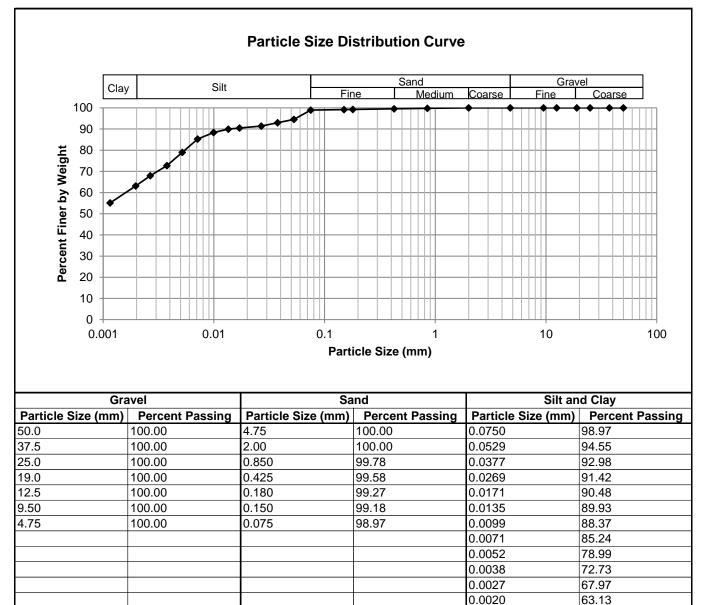
Test Hole	TH20-01	TH20-01	TH20-01	TH20-01	TH20-01	TH20-01
Depth (m)	0.0 - 0.2	0.3 - 0.5	1.1 - 1.2	2.6 - 2.7	3.0 - 3.2	4.4 - 4.6
Sample #	G01	G02	G03	G05	G06	G07
Tare ID	K1	Z16	N62	AB18	E93	Z135
Mass of tare	8.4	8.8	8.5	6.7	8.5	8.4
Mass wet + tare	252.7	231.0	169.8	149.8	132.3	213.2
Mass dry + tare	197.7	178.1	121.7	93.6	86.7	145.1
Mass water	55.0	52.9	48.1	56.2	45.6	68.1
Mass dry soil	189.3	169.3	113.2	86.9	78.2	136.7
Moisture %	29.1%	31.2%	42.5%	64.7%	58.3%	49.8%

Test Hole	TH20-01	TH20-01	TH20-01	TH20-01	TH20-01	
Depth (m)	5.3 - 5.5	7.3 - 7.5	7.8 - 7.9	10.5 - 10.7	11.9 - 12.0	
Sample #	G08	G10	G11	G13	G14	
Tare ID	P15	W35	AC29	H90	H36	
Mass of tare	8.5	8.5	6.7	8.5	8.5	
Mass wet + tare	204.5	144.3	167.4	158.2	148.8	
Mass dry + tare	141.5	99.3	120.2	106.0	103.6	
Mass water	63.0	45.0	47.2	52.2	45.2	
Mass dry soil	133.0	90.8	113.5	97.5	95.1	
Moisture %	47.4%	49.6%	41.6%	53.5%	47.5%	

of Winnipeg		_		CERTIFIED BY	
		_			1
pe Stabilizatio	n at SRB 6-7	_		Canadian Council o	Independent Laboratories
20-01				For specific tests a	s listed on www.ccil.com
ļ		_			
- 2.1		_			
Jul-20		-		Liquid Limit	91
Aug-20		-		Plastic Limit	26
Н		-		Plasticity Index	64
	1	2	3		
)	17	26	32		
e (g)	24.069	22.274	22.908		
e (g)	19.312	18.441	18.800		
	14.195	14.195	14.200		
	4.757	3.833	4.108		
	5.117	4.246	4.600		
b)	92.965	90.273	89.304		
sticity Chart fo Iller than 0.42	- 61	Cl	CH MH or (The	
10 20) 30 4		60 70	80 90	100 110
1			CL-ML ML or OL 0 20 30 40 50	CL-ML ML or OL	CL-ML ML or OL ML or OL 0 20 30 40 50 60 70 80 90

Plastic Limit

Trial #	1	2	3	4	5
Mass Tare (g)	14.202	14.125			
Mass Wet Soil + Tare (g)	20.641	20.000			
Mass Dry Soil + Tare (g)	19.295	18.771			
Mass Water (g)	1.346	1.229			
Mass Dry Soil (g)	5.093	4.646			
Moisture Content (%)	26.428	26.453			


Project No.	0015-035-00				CERTIFIED BY	
Client	City of Winnipe	g				1 1
Project	Slope Stabilizat	ion at SRB 6-7			Construction of the	
•	<u> </u>				For specific tests as	s listed on www.ccil.com
Test Hole	TH20-01					
Sample #	T09					
Depth (m)	6.1 - 6.7					
Sample Date	31-Jul-20				Liquid Limit	79
Test Date	06-Aug-20				Plastic Limit	20
Technician	AB				Plasticity Index	60
Liquid Limit						
Trial #		1	2	3		
Number of Bl		16	26	34		
Mass Wet So		20.427	20.099	21.177		
Mass Dry Soi		17.697	17.452	18.181 14.277		
Mass Tare (g		14.399 2.730	14.117 2.647	2.996		
Mass Water (Mass Dry Soi		3.298		3.904		
Moisture Cor		82.777	3.335 79.370	76.742		
MOISTURE CON	iterit (%)	02.111	19.310	70.742		
 08 00 <	Plasticity Chart smaller than 0.4	for solid fraction w 425 mm	vith particles	СН	"Line "A" Line	
30 20 10	- - - - - -	- CL ML	C\ or OL	MH or C	DH	
0 10 20 30 40 50 60 70 80 90 100 110 Liquid Limit (%)						

Plastic Limit

Trial #	1	2	3	4	5
Mass Tare (g)	14.078	14.097			
Mass Wet Soil + Tare (g)	20.231	20.386			
Mass Dry Soil + Tare (g)	19.219	19.342			
Mass Water (g)	1.012	1.044			
Mass Dry Soil (g)	5.141	5.245			
Moisture Content (%)	19.685	19.905			

Project No. Client Project	0015-035-00 City of Winnipeg Slope Stabilization at SRB 6-7		CERTIFIED BY
Test Hole	TH20-01		
Sample #	T09		
Depth (m)	6.1 - 6.7	Gravel	0.0%
Sample Date	31-Jul-20	Sand	1.0%
Test Date	6-Aug-20	Silt	35.6%
Technician	NS	Clay	63.4%

55.12

0.0012

Project No.	0015-035-00
Client	City of Winnipeg
Project	Slope Stabilization at SRB 6-7
Test Hole	TH20-01
Sample #	T04
Depth (m)	1.5 - 2.1
Sample Date	31-Jul-20
Test Date	04-Aug-20

BMH

Tuba Extractio

Technician

Tube Extra	ction			
Recovery (mr	m) 670 (o	verpush)		
2.	15 m 2.10 m		1.97 m	
Bottom - 2.2				Top - 1.5 m
	PP TV			
	Moisture Content		_	
Toss		Bulk	Toss (Slough Material)
	Visual		(Slough Material)
	Atterberg Limits			
30 mm	40 mm	130 mm	470 mm	
Visual Clas			Moisture Content	
Material	Clay		Tare ID	F17
Composition	silty		Mass tare (g)	8.7
trace silt inclus	sions (<10 mm diam.)		Mass wet + tare (g)	446.9
			Mass dry + tare (g)	301.2
			Moisture %	49.8%
			Unit Weight	700.0
Color			Bulk Weight (g)	730.8
Moisture	mottled brown and gre moist	ey	Length (mm) 1	108.80
Consistency	stiff		2	108.30
Plasticity	high plasticity		3	108.53
Structure	blocky		а А	108.23
Gradation	blooky		Average Length (m)	0.108
			······································	
Torvane			Diam. (mm) 1	70.21
Torvane Reading		0.53	Diam. (mm) 1 2	70.21 69.25
	m,l)	0.53 m		
Reading Vane Size (s,	m,I) near Strength (kPa)		2	69.25
Reading Vane Size (s, Undrained Sh	near Strength (kPa)	m	2	69.25 69.93
Reading Vane Size (s, Undrained Sh Pocket Pen	etrometer	m 52.0	2 3 4 Average Diameter (m)	69.25 69.93 69.47 0.070
Reading Vane Size (s, Undrained Sh	near Strength (kPa) etrometer 1	m 52.0 1.00	2 3 4 Average Diameter (m) Volume (m ³)	69.25 69.93 69.47 0.070 4.14E-04
Reading Vane Size (s, Undrained Sh Pocket Pen	near Strength (kPa) etrometer 1 2	m 52.0 1.00 1.10	2 3 4 Average Diameter (m) Volume (m ³) Bulk Unit Weight (kN/m ³)	69.25 69.93 69.47 0.070 4.14E-04 17.3
Reading Vane Size (s, Undrained Sh Pocket Pen	near Strength (kPa) etrometer 1 2 3	m 52.0 1.00 1.10 1.00	2 3 4 Average Diameter (m) Volume (m ³) Bulk Unit Weight (kN/m ³) Bulk Unit Weight (pcf)	69.25 69.93 69.47 0.070 4.14E-04 17.3 110.2
Reading Vane Size (s, Undrained St <u>Pocket Pen</u> Reading	near Strength (kPa) etrometer 1 2	m 52.0 1.00 1.10	2 3 4 Average Diameter (m) Volume (m ³) Bulk Unit Weight (kN/m ³)	69.25 69.93 69.47 0.070 4.14E-04 17.3

Project No. Client Project	0015-035-00 City of Winnipeg Slope Stabilization at SRB 6-7
Test Hole	TH20-01
Sample #	Т09
Depth (m)	6.1 - 6.7
Sample Date	31-Jul-20
Test Date	04-Aug-20

BMH

Tube Extraction

Technician

Tube Extracti Recovery (mm)		rpush)			
6.74 m	(000	6.57 m	6.42 m	6.27 m	
Bottom - 6.8 m		0.07 m	0.12	0.27 m	Top - 6.1 m
		Visu	Jal		
Toss	Bulk		T) /		
	Buik	PP -	Keep		Toss
	Qu	Moisture			1000
		Atterberg	g Limits		
40 mm	170 mm	150	mm 150 mm	Ì	170mm
Visual Classif	ication		Moisture Content		
Material	Clay		Tare ID		Z01
Composition	silty		Mass tare (g)		8.5
	ns (<10 mm diam.)		Mass wet + tare (g)		411.2
	· · · · · · · · · · · · · · · · · · ·		Mass dry + tare (g)		275
			Moisture %		51.1%
			Unit Weight		
			Bulk Weight (g)		1113.1
Color	brown and grey		0 (0)		
Moisture	moist		Length (mm) 1		153.05
Consistency	stiff		2		153.02
Plasticity	high plasticity		3		153.61
Structure			4		152.67
Gradation			Average Length (m)		0.153
Torvane			Diam. (mm) 1		72.73
Reading		0.60	2		72.93
Vane Size (s,m,	I)	m	3		72.14
Undrained Shea	r Strength (kPa)	58.8	4		71.72
			Average Diameter (m))	0.072
Pocket Penet Reading	rometer 1	1.20	Volume (m ³)		6.30E-04
Nouding	2	1.30	Bulk Unit Weight (kN/	(m ³)	17.3
	3	1.20	Bulk Unit Weight (pcf		110.3
	Average	1.23	Dry Unit Weight (kN/n	·	11.5
Undrained Shea	r Strength (kPa)	60.5	Dry Unit Weight (pcf)		73.0
					70.0

Project No. Client Project	0015-035-00 City of Winnipeg Slope Stabilization at SRB 6-7			
Test Hole	TH20-01			
Sample #	Т09			
Depth (m)	6.1 - 6.7	Unconfined	Strength	
Sample Date	31-Jul-20		kPa	ksf
Test Date	4-Aug-20	Max q _u	102.4	2.1
Technician	BMH	Max S _u	51.2	1.1

Specimen Data

Description Clay - silty, trace silt inclusions (<10 mm diam.), brown and grey, moist, stiff, high plasticity,

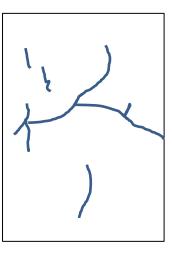
Length	153.1	(mm)	Moisture %	51%	
Diameter	72.4	(mm)	Bulk Unit Wt.	17.3	(kN/m ³)
L/D Ratio	2.1		Dry Unit Wt.	11.5	(kN/m ³)
Initial Area	0.00411	(m ²)	Liquid Limit	79	
Load Rate	1.00	(%/min)	Plastic Limit	20	
			Plasticity Index	59	

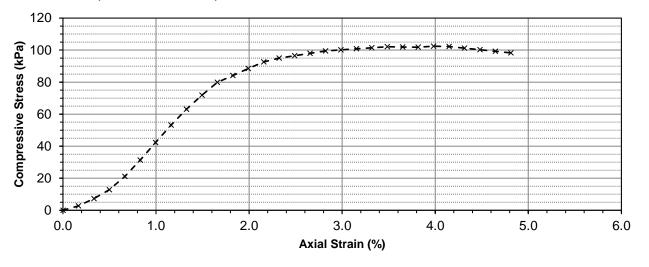
Undrained Shear Strength Tests

Torvane			Po	ocket Pene	etrometer		
Reading	Undrained Sh	near Strength	Re	ading	Undrained S	hear Strength	
tsf	kPa	ksf	tsf	F	kPa	ksf	
0.60	58.8	1.23		1.20	58.9	1.23	
Vane Size				1.30	63.8	1.33	
m				1.20	58.9	1.23	
			Average	1.23	60.5	1.26	

Failure Geometry

Sketch:




Photo:

Project No.	0015-035-00
Client	City of Winnipeg
Project	Slope Stabilization at SRB 6-7

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004115	0.0	0.00	0.00
10	3	0.2540	0.17	0.004121	11.1	2.69	1.34
20	8	0.5080	0.33	0.004128	30.2	7.32	3.66
30	14	0.7620	0.50	0.004135	53.2	12.86	6.43
40	23	1.0160	0.66	0.004142	87.6	21.16	10.58
50	34	1.2700	0.83	0.004149	129.8	31.27	15.64
60	46	1.5240	1.00	0.004156	175.7	42.27	21.14
70	58	1.7780	1.16	0.004163	221.2	53.14	26.57
80	69	2.0320	1.33	0.004170	262.7	63.01	31.50
90	79	2.2860	1.49	0.004177	300.4	71.91	35.95
100	88	2.5400	1.66	0.004184	334.0	79.83	39.92
110	93	2.7940	1.83	0.004191	352.7	84.16	42.08
120	98	3.0480	1.99	0.004198	371.4	88.47	44.24
130	103	3.3020	2.16	0.004205	389.5	92.62	46.31
140	106	3.5560	2.32	0.004212	400.1	94.98	47.49
150	108	3.8100	2.49	0.004220	407.2	96.49	48.25
160	110	4.0640	2.65	0.004227	414.2	98.00	49.00
170	112	4.3180	2.82	0.004234	421.3	99.50	49.75
180	113	4.5720	2.99	0.004241	424.8	100.16	50.08
190	114	4.8260	3.15	0.004249	428.3	100.82	50.41
200	115	5.0800	3.32	0.004256	431.9	101.48	50.74
210	116	5.3340	3.48	0.004263	435.4	102.13	51.07
220	116	5.5880	3.65	0.004270	435.4	101.96	50.98
230	116	5.8420	3.82	0.004278	435.4	101.78	50.89

Project No.0015-035-00ClientCity of WinnipegProjectSlope Stabilization at SRB 6-7

Unconfined Compression Test Data (cont'd)

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	117	6.0960	3.98	0.004285	438.9	102.43	51.22
250	117	6.3500	4.15	0.004293	438.9	102.25	51.13
260	116	6.6040	4.31	0.004300	435.4	101.26	50.63
270	115	6.8580	4.48	0.004308	431.9	100.26	50.13
280	114	7.1120	4.65	0.004315	428.3	99.27	49.63
290	113	7.3660	4.81	0.004323	424.8	98.28	49.14

Project No.	0015-035-00
Client	City of Winnipeg
Project	Slope Stabilization at SRB 6-7
Test Hole	TH20-01
Sample #	T12
Depth (m)	9.1 - 9.8
Sample Date	31-Jul-20
Test Date	04-Aug-20
Technician	BMH

Tube Extraction

Recovery (mm)	720	(overpush)		
ہ Bottom - 9.9 m	9.75 m	9.7 m	9.54 m	9.37 m Top - 9.1 m
Toss	Visual PP TV Moisture Conten	Bulk Qu	Keep	Toss
60 mm	50 mm	160 mm	180 mm	270mm
Visual Classif	ication		Moisture Content	
Material	Clay		Tare ID	AB19
Composition	silty		Mass tare (g)	6.7
	(

composition	i Silly			0.7
trace silt inclu	sions (<20 mm diam.)		Mass wet + tare (g)	242
			Mass dry + tare (g)	160.6
			Moisture %	52.9%
			Unit Weight	
			Bulk Weight (g)	1067.7
Color	dark grey			
Moisture	moist		Length (mm) 1	152.57
Consistency	firm to stiff		2	152.53
Plasticity	high plasticity		3	152.53
Structure	-		4	153.34
Gradation			Average Length (m)	0.153
Torvane			Diam. (mm) 1	72.39
Reading		0.50	2	71.25
Vane Size (s,	,m,l)	m	3	71.69
-	hear Strength (kPa)	49.0	4	72.16
			Average Diameter (m)	0.072
Pocket Per	netrometer			
Reading	1	0.90	Volume (m ³)	6.20E-04
-	2	1.00	Bulk Unit Weight (kN/m ³)	16.9
	3	0.90	Bulk Unit Weight (pcf)	107.6
	Average	0.93	Dry Unit Weight (kN/m ³)	11.1
	Average	0.00		

Project No. Client Project	0015-035-00 City of Winnipeg Slope Stabilization at SRB 6-7					
Test Hole	TH20-01					
Sample #	T12					
Depth (m)	9.1 - 9.8	Unconfined	Unconfined Strength			
Sample Date	31-Jul-20		kPa	ksf		
Test Date	4-Aug-20	Max q _u	129.5	2.7		
Technician	BMH	Max S _u	64.7	1.4		

Specimen Data

Description Clay - silty, trace silt inclusions (<20 mm diam.), dark grey, moist, firm to stiff, high plasticity

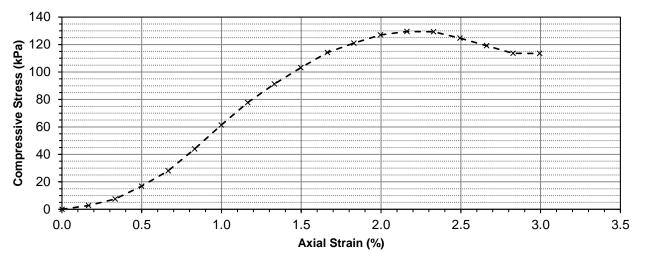
Length	152.7	(mm)	Moisture %	53%	
Diameter	71.9	(mm)	Bulk Unit Wt.	16.9	(kN/m ³)
L/D Ratio	2.1		Dry Unit Wt.	11.1	(kN/m^3)
Initial Area	0.00406	(m ²)	Liquid Limit	-	
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	

Undrained Shear Strength Tests

Torvane			Po	Pocket Penetrometer			
Reading	Undrained Shear Strength		Reading		Undrained Shear Strength		
tsf	kPa	ksf	tsf	-	kPa	ksf	
0.50	49.0	1.02		0.90	44.1	0.92	
Vane Size				1.00	49.1	1.02	
m				0.90	44.1	0.92	
			Average	0.93	45.8	0.96	

Failure Geometry

Sketch:


Photo:

Project No.	0015-035-00
Client	City of Winnipeg
Project	Slope Stabilization at SRB 6-7

Unconfined Compression Test Graph

Unconfined Compression Test Data

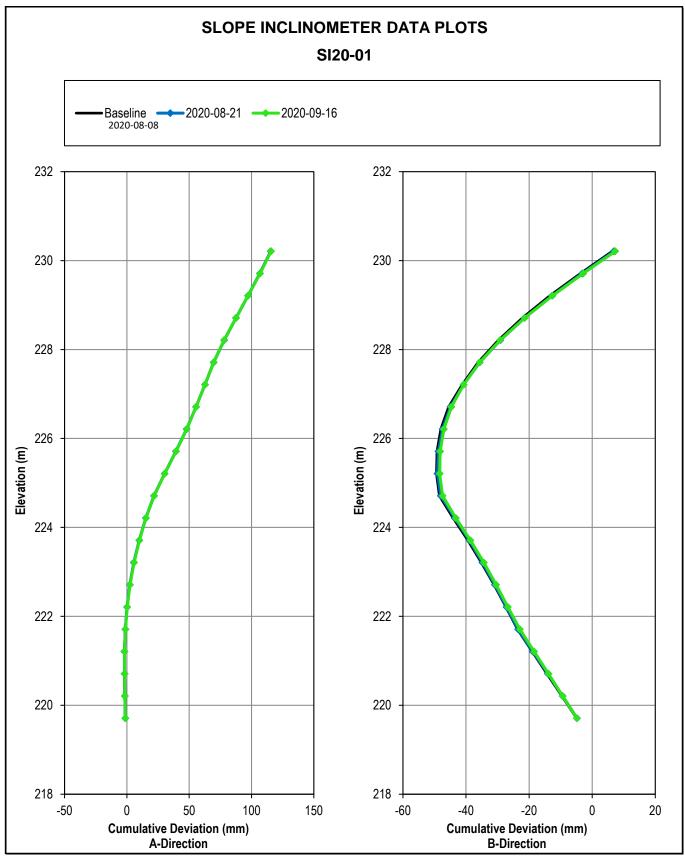
Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004057	0.0	0.00	0.00
10	3	0.2540	0.17	0.004064	11.1	2.73	1.36
20	8	0.5080	0.33	0.004071	30.2	7.42	3.71
30	18	0.7620	0.50	0.004077	68.5	16.80	8.40
40	30	1.0160	0.67	0.004084	114.4	28.02	14.01
50	47	1.2700	0.83	0.004091	179.5	43.88	21.94
60	66	1.5240	1.00	0.004098	251.4	61.35	30.68
70	84	1.7780	1.16	0.004105	319.1	77.73	38.86
80	99	2.0320	1.33	0.004112	375.2	91.24	45.62
90	113	2.2860	1.50	0.004119	424.8	103.14	51.57
100	126	2.5400	1.66	0.004126	470.9	114.13	57.07
110	134	2.7940	1.83	0.004133	500.2	121.04	60.52
120	141	3.0480	2.00	0.004140	525.9	127.04	63.52
130	144	3.3020	2.16	0.004147	536.9	129.47	64.74
140	144	3.5560	2.33	0.004154	536.9	129.25	64.63
150	139	3.8100	2.49	0.004161	518.6	124.63	62.31
160	133	4.0640	2.66	0.004168	496.5	119.13	59.57
170	127	4.3180	2.83	0.004175	474.5	113.66	56.83
180	127	4.5720	2.99	0.004182	474.5	113.46	56.73

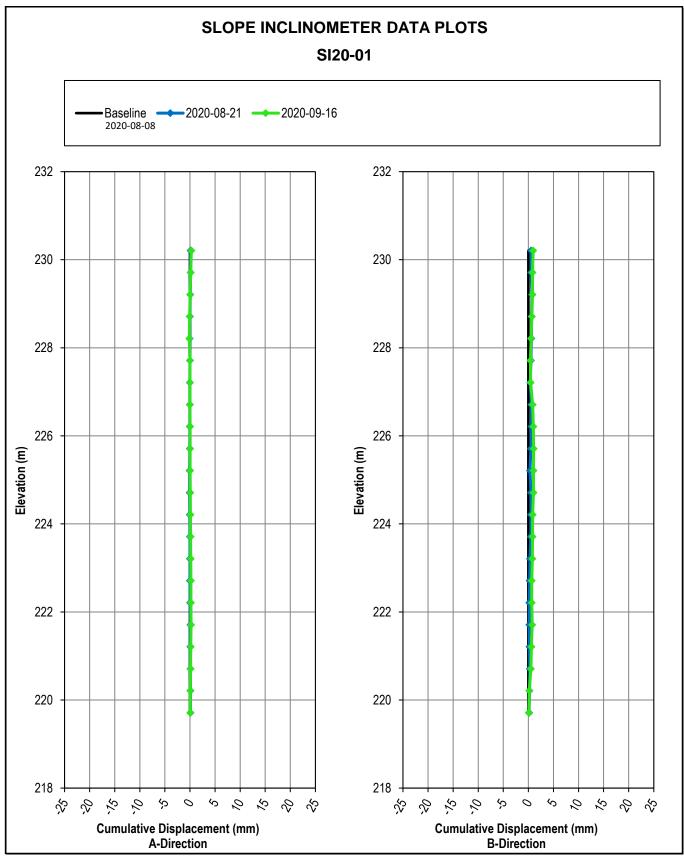
Appendix A

Site Photos

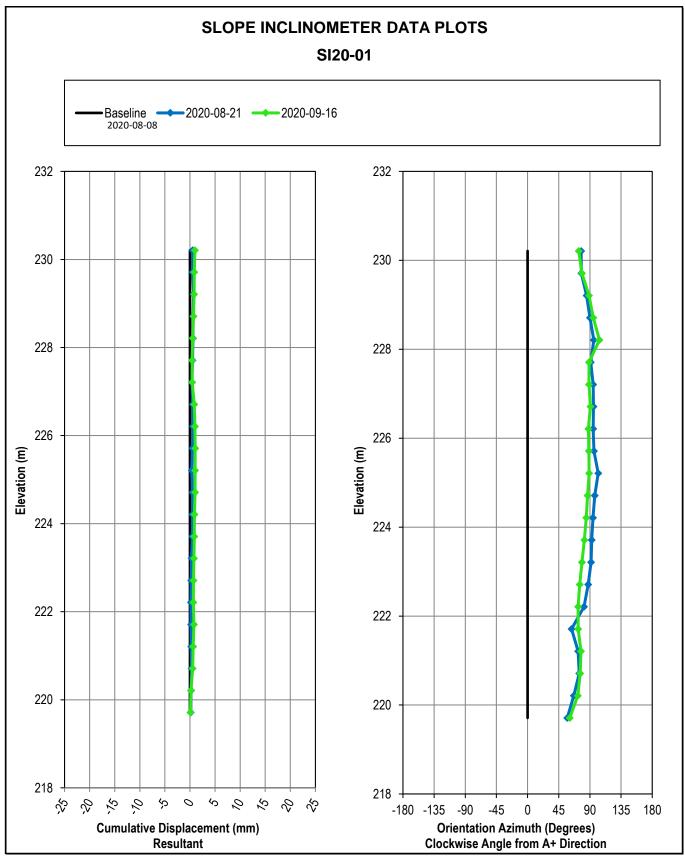
Looking northeast at the instability from toe of bank

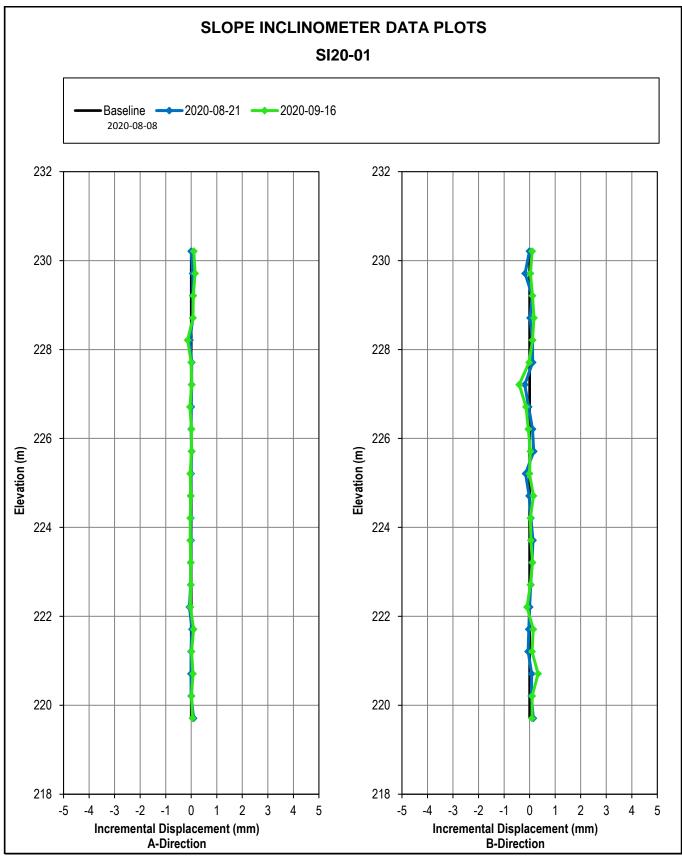
Looking northeast at the instability from top of bank

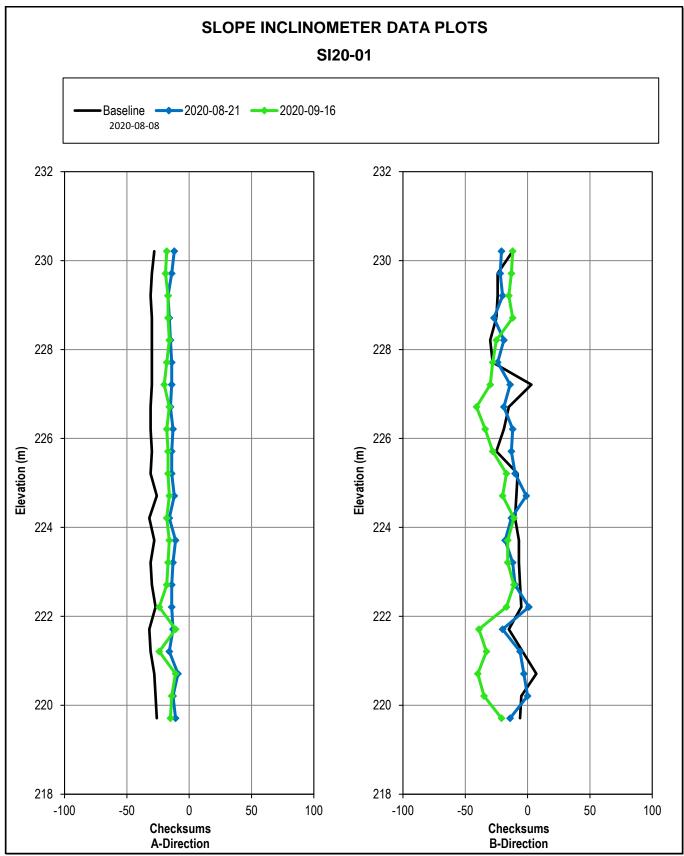

Looking southwest at the instability from top of bank after completion of drilling

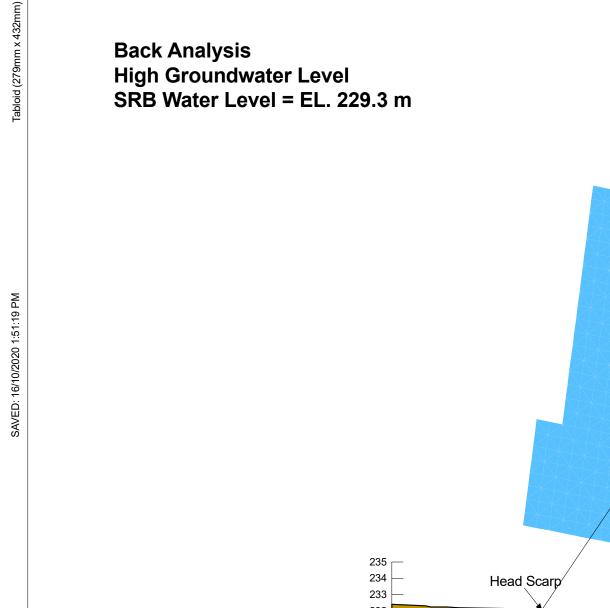

Appendix C

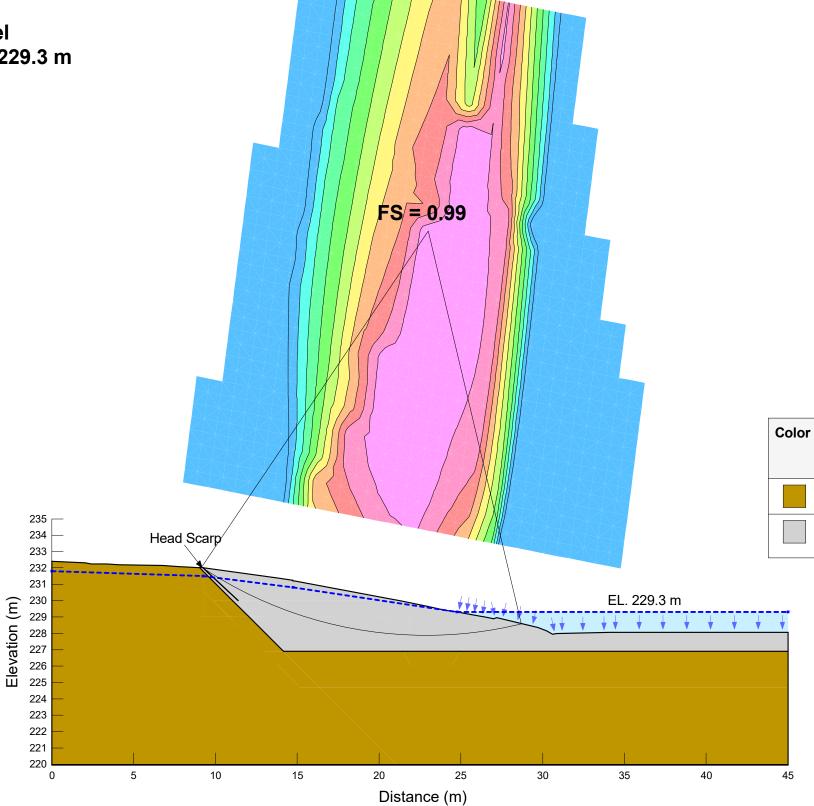
Slope Inclinometer Monitoring Results









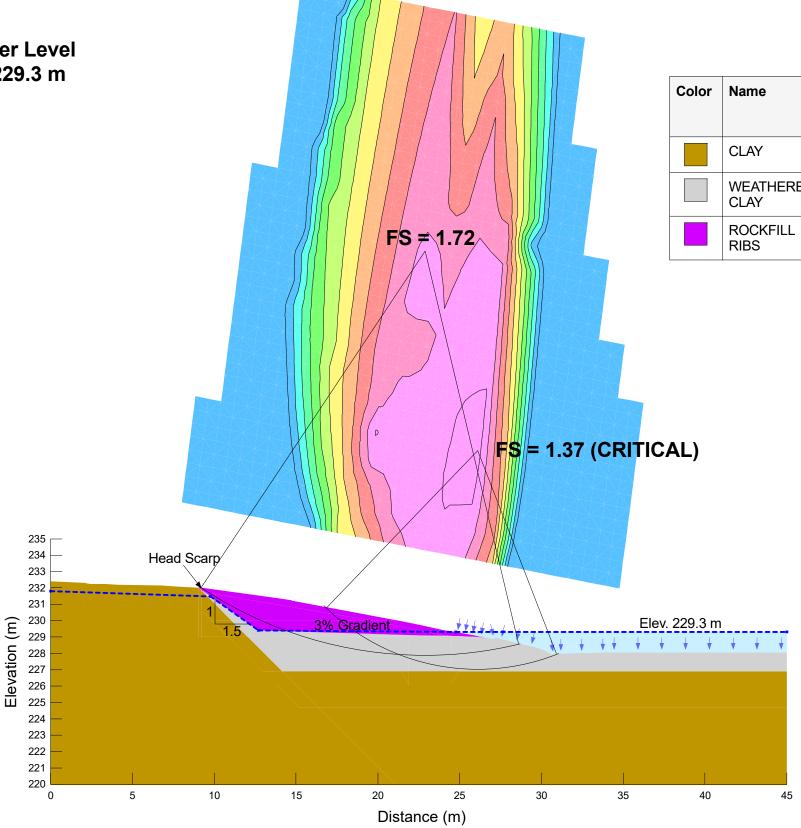


Appendix D

Slope Stability Analysis Results

FILE PATH: Z:\Projects\0015 City of Winnipeg\0015 035 00 Slope Stabilization at SRB 6-7\2 Design\2.7 Modelling\Revision 1 PD Analyses\M001_1_A_RB - Back Analysis.gsz

0015-035-00


City of Winnipeg

Slope Stabilization of Storm Retention Basin (SRB) 6-7

r	Name	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	CLAY	17.3	5	17
	WEATHERED CLAY	17.3	0	17

Rockfill Ribs High GWL and SRB Water Level SRB Water Level = EL. 229.3 m

FILE PATH: Z:\Projects\0015 City of Winnipeg\0015 035 00 Slope Stabilization at SRB 6-7\2 Design\2.7 Modelling\Revision 1 PD Analyses\M002_1_B_RB - Ribs_ST.gsz

0015-035-00 City of Winnipeg

Slope Stabilization of Storm Retention Basin (SRB) 6-7

	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	17.3	5	17
HERED	17.3	0	17
FILL	19	0	31

Rockfill Ribs

[abloid (279mm x 432mm)

FILE PATH: Z:\Projects\0015 City of Winnipeg\0015 035 00 Slope Stabilization at SRB 6-7\2 Design\2.7 Modelling\Revision 1 PD Analyses\M002_2_B_RB - Ribs_LT.gsz

0015-035-00

City of Winnipeg

Slope Stabilization of Storm Retention Basin (SRB) 6-7

Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
17.3	5	17
17.3	0	17
19	0	31